
- •2. Титан и сплавы на его основе
- •6. Основные типы кристаллических решёток, их дефекты.
- •7 Сталь качественная конструкционная
- •8. Кристаллизация Ме. Зародыши. Слиток.
- •9.Диаграммы металлов с полиморфными превращениями
- •10 Цементируемые и улучшаемые легированные
- •11. Методы опред техн-х св-в Ме. Техн пробы
- •13. Механич. Испытания.
- •17. Структура и свойства композиционных материалов на полимерной матрице.
- •18. Физические свойства материалов и методы их оценки.
- •19. Термомеханическая и механотермическая обработка сталей. Патентирование металла, технология, примеры применения
- •20 Алюминий, технология его получения и области прим
- •21.Классификация металл-х сплавов.
- •22 Закалка и отпуск
- •23. Макроизломы.
- •24.Триботехнические св-ва металлов. Примеры анти-, фрикционных материалов, применяемых на транспорте
- •26. Диаграмма 1 типа. Правило отрезков.
- •27 Легированные стали классифицируют:
- •28. Влияние легирующих эл-тов на чугун.
- •29. Магний, своство сплавов, применение.
- •30. Диаграмма 2 типа. Правило отрезков.
- •32. Коррозионно-стойкие стали.
- •33.Анализ диаграммы сплавов, образующих неустойчивые хим. Соединения
- •34.Разновидности отжига и примеры применения его на транспорте
- •35. Диаграмма 4 типа. Правило отрезков.
- •36 Основн способы закалки сталей Превращ аустенита
- •38. Диаграмма 3 типа. Правило отрезков.
- •47 Классификация припоев
- •1. Классификация
- •48. Серый чугун. Антифрикционные сч
- •51. Классификация легированных чугунов, структура
- •52.Класификация и маркировка алюмин деформир
- •55. Опред-е твердости ме. Методы безобраз. Испытания
- •56. Технология производства меди, маркировка
- •57 Химическое модифицирование высокоэнергетическими методами.
- •58.Медно-никелевые сплавы, маркировка и области применения.
- •59.Различные виды цементации стали, технология, св-ва и применение
- •60 Классификация бронз. Маркировка и область применения
- •65.Технология производства чугуна (продукты доменного процесса).
- •70.Азотирование и нитроцементация.
- •76 Классификация и маркировка сталей.
- •78.Анализ основных видов отпуска стали. Структурно-фазовые превращения
- •81 Кремнийорганические пластмассы
- •83.Классификация конструкционных материалов и металлов. Их св-ва и примеры
8. Кристаллизация Ме. Зародыши. Слиток.
Кристаллизац. Переход Ме из жидкого состояния в твердое (кристаллическое). Она протекает, когда система переходит к термодинамически более устойчивому состоянию с меньшей энергией Гиббса (свободной). Процесс кристаллизации начинается с образования кристаллич. зародышей(центров кристаллизации) и продолжается в процессе роста их числа и размеров. При переохлаждении сплава ниже равновесной температуры во многих участках жидкого сплава образуются устойчивые, способные к росту кристаллич. зародышей. При столкновении растущих кристаллов их правильная форма нарушается. Рост продолжается только в тех направлениях, где есть свободный доступ «питающей» жидкости. Слиток
Кристаллы, образующиеся в процессе затвердевания Ме, могут иметь различную форму в зависимости от скорости охлаждения, хар-ра и количества примесей. Чаще в процессе кристаллизации образуются разветвленные (древовидные) кристаллы – дендриты. При образовании кристаллов их развитие идет в основном в направлении, перпендикулярном к плоскостям с максимальной плотностью упаковки атомов. Дендридное строение выявляется после спец-го травления шлифов, т.к. все промежутки между ветвями дендритов заполнены и видны обычно только места стыков дендроидов в виде границ зерен. Дендридное строение хар-но для макро- и микроструктуры литого Ме (сплава).
9.Диаграммы металлов с полиморфными превращениями
Полиморфизм – это свойство металлов в зависимости от температуры и давления существовать в состояниях с различными кристаллическими решетками.
Рисунок 2. Диаграмма состояния с полиморфным превращением у одного из компонентов: ТпА – температура полиморфного превращения компонента А (Fe, Sn, Co, Mk, Ti, Zr и др.), ТАаТВ – линия ликвидус, ТАбТВ – линия солидус, ТпА-С2 – линия начала полиморфного превращения, ТпА-С1 – линия окончания полиморфного превращения.
После затвердевания все сплавы состоят из γ-твердого раствора (твердый раствор В в Аγ). С понижением температуры ниже ТпА-С2: Аγ превращается в Аα (модификации). В области С1-С2 в равновесии находится две фазы α+γ, где α – твердый раствор В в Аα.
Многие мет-лы в завис-ти от t могут сущест-ть в разных крист формах. Или полиморфных модификаций. Чтобы полим превращ протикало нужно переохлаждение относительно равновестной температуры для возникновения разности энергий Гиббса межде исходной образующей новой модификации.
10 Цементируемые и улучшаемые легированные
Цементуемые улучшаемые стали содержат 0,1-0,3 % углерода и 0,2-4,4 % легирующих элементов. После насыщения углеродом, закалки и низкого отпуска детали из таких сталей имеют высокую поверхностную твердость (до 58-63 HRC) при вязкой центральной части. Стали 15ХФ, 15Х, 20Х (с пределом текучести до 700 МПа ) используют для изготовления небольших нагруженных деталей, испытывающих средние по величине знакопеременные и ударные нагрузки. Стали 12ХНЗА, 20ХНЗА, 20ХН4А (с пределом текучести более 700 МПа) используют для изготовления деталей средних и больших размеров, работающих в условиях интенсивного изнашивания, при повышенных нагрузках. Особо ответственные детали, например зубчатые колеса авиационных и судовых двигателей, изготавливают из сталей 18Х2Н4МА, 18Х2Н4ВА. Экономно легированные стали 18ХГТ, ЗОХГ, 25ХГТ имеют наследственную мелкозернистую структуру, что позволяет сократить технологический цикл обработки детали. Такие стали применяют для изготовления ответственных деталей крупносерийного и массового производства.
Машиностроительные улучшаемые легированные стали содержат 0,3—0,5 % углерода и до 5 % легирующих элементов. Используются преимущественно после улучшения (закалки и высокого отпуска при температуре 500-1600 °С на сорбит). Основное применение - ответственные детали машин, эксплуатируемые при воздействии циклических или ударных нагрузок. Для изготовления средненагруженных небольших деталей машин и механизмов без значительных динамических нагрузок применяют хромистые стали З0Х, 38Х, 40Х, 50Х. С увеличением содержания углерода возрастает прочность этих сталей, но несколько снижается их вязкость и пластичность. Из хромо-никелевых сталей 40ХН, 50ХН, а также из хромокремнемарганцевых сталей 30ХГСА, 35ХГСА, которые обладают высокими прочностными и вязкостными свойствами, изготавливают ответственные детали, работающие при воздействии динамических нагрузок.