- •В. В. Ревин г. В. Максимов о. Р. Кольс биофизика
- •Введение
- •Глава 1
- •Основные структуры и органеллы клетки
- •Основные типы клеток
- •Клетки животных
- •Клетки растений
- •1.3. Методы исследования клеток
- •Метод электронной микроскопии
- •Метод флуоресцентных зондов
- •Метод восстановленной флуоресценции после фотоотбеливания
- •Метод конфокальной лазерной сканирующей микроскопии
- •Метод спектроскопии комбинационного рассеяния
- •Микроспектроскопия комбинационного рассеяния
- •Метод динамической фазовой микроскопии
- •Глава 2 биологические мембраны
- •Методы исследования биологических мембран
- •Выделение и характеристика мембранных фракций
- •Исследование структурной организации мембран
- •2.2. Состав и структура биологической мембраны
- •Мембранные липиды
- •Фазовые переходы в липидном бислое
- •Мембранные белки
- •2.3. Плазматическая мембрана
- •Глава 3 основные функции клетки
- •Проницаемость и транспорт веществ в биологических мембранах
- •Методы изучения проницаемости
- •Пассивный и активный транспорт веществ через мембрану
- •Пассивный транспорт
- •Диффузия
- •Осмос и фильтрация
- •2. Активный транспорт
- •Хемиосмотическая теория Митчелла
- •Биоэлектрические явления
- •3.2.1. Физико-химические основы возникновения биопотенциалов
- •1.1. Физико-химические процессы формирования мембранного потенциала
- •1.2. Потенциал покоя
- •3.2.1.3. Потенциал действия
- •Полный цикл потенциала действия
- •Характеристика потенциала действии в нераах холоднокровных и теплокронных животных, мс
- •3.2.2. Распространение возбуждения
- •Проведение потенциалов действия (теория местных токов)
- •Ионный канал
- •Физические принципы при моделировании транспорта иона через канал
- •Поверхностный потенциал клеточной мембраны
- •Воротные механизмы в ионных каналах
- •Потенциалзависимые каналы
- •Потенциалзависимый натриевый канал
- •Сенсор Жидкая липидная мембрана
- •Потенциалзависимый калиевый канал
- •Потенциалзависимый кальциевый канал
- •Синтез ионных каналов
- •Энергообеспечение проведения возбуждения
- •Клеточная рецепция
- •Клеточная гормональная рецепция
- •Клеточная фоторецепция
- •Фотосинтез
- •Клеточная подвижность
- •Мышечное сокращение
- •Модель скользящих нитей
- •Элементарный акт мышечного сокращения
- •3.4.1.3. Рабочий цикл актомиозинового комплекса
- •Клеточные механизмы иммунитета
- •Сверхслабое свечение клеток
- •Глава 4 клеточная и мембранная патология
- •Перекисное окисление липидов
- •Гипертония
- •Сахарный диабет
- •Демиелинизация
- •Апоптоз
- •Справочный материал
Микроспектроскопия комбинационного рассеяния
Спектры КР от отдельных участков клетки получают на КР-мик- роспектрометре с тройным монохроматором и фотоэлектронной регистрацией сигнала. Запись и обработку спектров проводят с помощью компьютера. В качестве источника возбуждения используют аргоновый лазер. С целью устранения плазменных линий, расположенных вблизи от возбуждающей линии, перед кюветным отделением помещают предмонохроматор или интерференционный фильтр. Для получения спектров с пространственным разрешением применяют РКР-спект- рометр, состыкованный с оптическим микроскопом. При работе с клетками устанавливают водоиммерсионный объектив 100х с числовой аппертурой 0,95. Этот объектив фокусирует лазерный луч в плоскости х — у до 1 мкм2. Установка диафрагмы диаметром 200 мкм дает пространственное разрешение по оси г, составляющее около 4 мкм. Пространственное разрешение — около 4 мкм3.
Метод динамической фазовой микроскопии
В настоящее время для исследования быстрых изменений формы клетки или отдельных ее частей используют лазерный фазовый микроскоп (рис. 1.10), представляющий собой модифицированный интерференционный микроскоп с модуляцией фазы референтной волны, с гелий-неоновым лазером (А, = 633 нм) для когерентного освещения объекта и диссектором в качестве координатно-чувствительного фотоприемника. Важно, что измерение клеток проводят в отраженном свете. При регистрации используют объектив х20/0,45, размер поля зрения — 128 х 128 пике (20 х 20 мкм); время измерения в одной точке скан-линии Г,- — 1 мс, время ввода трек-диаграммы — 14,7 с. Микроскоп позволяет получать изображения в виде оцифрованного двумерного распределения фазы h(x, у), которая измерялась в единицах длины (оптической разности хода лучей) в реальном времени. Метод динамической фазовой микроскопии основан на периодических измерениях фазы вдоль произвольно установленного сегмента (скан- линии) в-изображении объекта. Полученная при периодическом сканировании матрица чисел (трек-диаграмма) содержит информацию об изменениях локальной фазовой высоты в точках скан-линии за время измерений. Накопленные в памяти компьютера данные подвергаются обработке и содержат количественную информацию о флуктуациях локальной разности хода (фазовой высоты) h (х, у), пропорциональной проекции локального показателя преломления п(х, у, z). Как правило, линию сканирования выбирают поперек клетки и производят периодические измерения высоты фазового профиля h(x), где х — координата скан-линии.
Гелий-неоновый
лазер
Рис.
1.10. Блок-схема динамического фазового
микроскопа
Глава 2 биологические мембраны
Биологические мембраны (лат. membrana — кожица, оболочка, перепонка) — структуры, ограничивающие клетки (клеточные, или плазматические, мембраны) и внутриклеточные органоиды (мембраны митохондрий, хлоропластов, лизосом, эцдоплазматического ретикулума и др.). Мембраны содержат белки, липиды, углеводы, различные макромолекулы (гликопротеиды, гликолипиды), а также в небольших количествах коферменты, нуклеиновые кислоты, антиоксиданты, неорганические ионы И т. д.
Биологические мембраны состоят из нескольких молекулярных слоев, суммарная толщина которых обычно не превышает 10 нм.
Предположение о существовании мембран, отделяющих внутреннее содержимое живой клетки от окружающей среды, высказывалось еще в XIX в. На это указывали, в частности, данные о значительных различиях между составом клетки и окружающей среды. В 1890 г. немецкий исследователь В. Пфеффер (W. Pfeffer) предложил термин «клеточная, или плазматическая, мембрана». Однако увидеть и сфотографировать ПМ удалось лишь в 40-е гг. XX в. при использовании электронного микроскопа. В 1935 г. Дж. Даниэлли (J. Danielli) и Г. Давсон (Н. Davson) сформулировали гипотезу двойного липидного слоя, определяющего строение ПМ. В 1964 г. Дж. Д. Робертсон (J. D. Robertson) развил данное представление, сформулировав концепцию асимметричности в строении ПМ. Согласно его теории биологическая мембрана содержит белки, которые связаны электростатически; на наружной поверхности БМ находятся гликолипиды. В 1966 г. Дж. Ле- нард (J. Lenard) и С. Сингер (S. Singer) предложили жидкомозаичную модель структуры БМ, согласно которой белки «плавают» на поверхности липидного бислоя в виде глобулярных молекул, погруженных в БМ. В 1970 г. Г. Вандеркой (G. Vanderkooi) и Д. Е. Грин (D. Е. Green) предложили белково-кристаллическую модель структуры БМ; наличие в БМ жесткой белковой структуры обусловлено даль- нодейсгвующими белок-белковыми взаимодействиями. Отметим, что эти представления активно развиваются и сегодня (рис. 2.1). В настоящее время наиболее популярна теория жидкомозаичной мембраны.
Рассмотрим подробнее плазматическую мембрану. ПМ играют важную роль в осуществлении следующих клеточных функций:
D.
E. Green и
J. Perdue (1966)
Рис.
2.1. Развитие представлений о молекулярной
организации биологических
мембран
механическая — обеспечивают прочность и автономность клетки;
барьерная — благодаря полупроницаемое™ обеспечивают селективный транспорт и распределение ионов между клеткой и средой;
генерация и проведение возбуждения — содержат каналы, обменники и насосы, обеспечивающие транспорт ионов;
энергетическая — обеспечивают синтез АТФ в мембранах митохондрий и хлоропластов;
матричная — обеспечивают расположение и ориентацию белков и их взаимодействие;
адгезивная — обеспечивают межклеточные взаимодействия;
двигательная — обеспечивают процесс движения клетки;
секреторная — обеспечивают процесс экзо- и эндоцитоза.
Липиды ПМ подразделяют на фосфолипиды, гликолипиды, холестерин, триглицерол, стероиды и свободные жирные кислоты. Белки ПМ выполняют ряд функций (клеточное узнавание, рецепция, соединение отдельных комплексов и т. д.) и подразделяются на интегральные и периферические. Интегральные белки пронизывают липидный бислой ПМ и связаны с фосфоинозитидами. Периферические белки локализованы на поверхности ПМ (ферменты; белки, координирующие форму цитоскелета; белки, связанные с гликокаликсом).
Для ПМ клетки характерно явление асимметрии, при котором распределение и состав липидов на цитоплазматической поверхности мембраны отличаются от распределения и состава на экстраклеточной. Явление асимметрии ПМ необходимо для:
поддержания исходной формы клетки;
фиксации белковой ориентации, способствующей максимальному проявлению их активности (фермент, канал);
распознавания антигенов;
регуляции вязкости ПМ;
обеспечения процесса выведения старых клеток.
В настоящее время рассматриваются несколько общих факторов, регулирующих состояние ПМ. К ним относят действие температуры, состав жирных кислот, содержание холестерина, контакт ПМ с цитоскелетом, действие детергентов, анестетиков и гормонов.
Особый интерес представляют данные о наличии в ПМ специализированных областей (доменов). Функциональное значение данных структурных модификаций ПМ заключается в определении различий между апикальной и базолатеральной поверхностями полярных клеток, создании барьеров между апикальной и базолатералыюй мембранами, изменении характера процессов рецепции.
