- •Одобрено учебно-методической комиссией энергетического факультета
- •Введение
- •1. Электроприводы с релейно-контакторными системами управления
- •1.1. Условные обозначения, применяемые в электрических схемах
- •1.2. Способы пуска и торможения электроприводов с рксу
- •Пуск двигателя постоянного тока в функции скорости
- •Динамическое торможение двигателя постоянного тока в функции скорости
- •Торможение противовключением двигателя постоянного тока
- •Пуск синхронного двигателя в функции скорости
- •Разгон двигателя постоянного тока до скорости выше основной в функции тока якоря
- •Пуск двигателя постоянного тока в функции времени
- •1.3. Защиты в электроприводе
- •2. Способы формирования процессов пуска в регулируемых электроприводах
- •2.1. Оптимальные кривые переходных процессов разгона и торможения электропривода
- •2.2 Связь частотной характеристики электропривода с кривой тока якоря при разгоне
- •2.3. Формирование переходного процесса пуска двигателя в разомкнутой системе преобразователь-двигатель
- •Функциональная схема, показатели процесса пуска
- •Анализ показателей пуско-тормозных процессов в разомкнутой системе преобразователь-двигатель
- •2.4. Формирование прямоугольной токовой диаграммы с помощью отрицательной обратной связи по току якоря
- •2.5. Формирование прямоугольной токовой диаграммы с помощью гибких обратных связей по напряжению на якоре двигателя
- •2.6. Применение последовательных корректирующих устройств для улучшения формы кривой тока якоря при разгоне электропривода
- •2.7. Формирование прямоугольной токовой диаграммы с помощью интегрального задатчика интенсивности в схеме с отрицательной обратной связью по скорости
- •2.8. Формирование прямоугольной токовой диаграммы с помощью задатчика интенсивности в схеме с отрицательной обратной связью по напряжению на якоре
- •3. Способы поддержания скорости электропривода
- •3.1. Исходные положения
- •3.2. Показатели разомкнутой системы «преобразователь двигатель»
- •3.3. Применение отрицательной обратной связи по скорости вращения двигателя
- •3.4. Применение отрицательной обратной связи по напряжению на якоре двигателя
- •3.5. Применение положительной обратной связи по току якоря двигателя (ir-компенсация)
- •3.6. Регулирование по возмущению
- •4. Регулируемые электроприводы постоянного тока
- •4.1. Основные сведения об элементах серии убср
- •4.2. Основные типы регуляторов, реализуемых на операционных усилителях серии убср
- •4.3. Структурные схемы электроприводов на элементах убср
- •4.4. Одноканальная схема вентильного электропривода с подчиненным регулированием Принципиальная схема электропривода
- •Выбор базовых величин переменных
- •Структурная схема электропривода и параметры звеньев
- •Преобразования структурной схемы
- •Настройка контура регулирования тока якоря двигателя крт
- •Настройка контура регулирования скорости крс
- •Статические характеристики электропривода
- •Формирование процессов разгона и торможения привода
- •Процессы в электроприводе, вызванные приложением статической нагрузки
- •4.5. Электропривод постоянного тока по схеме "источник тока - двигатель" Функциональная схема электропривода
- •Статические характеристики электропривода
- •Настройка системы электропривода
- •Формирование процессов в электроприводах с большим диапазоном изменения момента
- •4.6. Электропривод постоянного тока с двухзонным регулированием скорости Постановка задачи
- •Функциональная схема электропривода
- •Структурная схема двигателя при скорости вращения выше основной
- •Структурная схема электропривода при работе в зоне ослабленного потока двигателя
- •Настройка электропривода с двухзонным регулированием скорости. Рекомендации по выбору регуляторов
- •Учет переменных параметров двигателя при настройке крн и крс
- •Статические характеристики электропривода
- •4.7. Электропривод с реверсом поля двигателя
- •4.8. Вентильный электропривод с параллельными регуляторами
- •Функциональная схема электропривода
- •Особенности настройки одноконтурной системы регулирования напряжения
- •5. Регулируемые электроприводы переменного тока
- •5.1. Общие положения. Преимущества электроприводов переменного тока
- •5.2. Понятие векторного регулирования электромагнитного момента в электрической машине переменного тока
- •5.3. Синхронный электропривод с частотнотоковым регулированием момента Конструирование системы управления
- •Функциональная схема электропривода
- •Работа электропривода в установившихся режимах
- •Вывод соотношения для величины электромагнитного момента двигателя
- •Анализ выражения для электромагнитного момента сд в электроприводе с частотнотоковым управлением
- •Статические характеристики электропривода с чту
- •Габаритная мощность силовых элементов в электроприводе переменного тока
- •5.4. Частотнорегулируемые синхронные электроприводы с регулированием продольной и поперечной составляющих тока статора
- •Эволюция силовых цепей, приводящая к вентильному двигателю
- •Функциональная схема электропривода
- •Статические характеристики электропривода
- •5.6. Особенности формирования моментного треугольника в асинхронных электроприводах
- •5.7. Асинхронный электропривод с частотнотоковым управлением Принятый способ формирования момента ад
- •Принципиальная схема электропривода
- •Статические характеристики электропривода
- •5.8. Регулируемые асинхронные электроприводы массовых серий
- •5.9. Асинхронные электроприводы с регулированием напряжения на статоре Функциональная схема электропривода
- •Структурная схема асинхронного двигателя
- •Настройка электропривода
- •Энергетические показатели и рациональные области применения электропривода
- •5.10. Электропривод с машиной двойного питания Общая оценка электроприводов с машинами двойного питания
- •Функциональная схема электропривода
- •Векторные диаграммы и статические характеристики электропривода
- •5.11. Частотнорегулируемый асинхронный электропривод с векторным управлением
- •6. Перспективные электроприводы с нетрадиционными типами двигателей и новейшими источниками питания
- •6.1. Вентильный индукторный электропривод
- •6.2. Электропривод с синхронным реактивным двигателем независимого возбуждения
- •7. Следящие электроприводы
- •7.1. Примеры электроприводов с регулированием положения выходного вала рабочего механизма
- •7.2. Ошибки следящих электроприводов в установившихся нормированных режимах
- •7.3. Позиционный тиристорный электропривод постоянного тока Функциональная схема электропривода
- •Настройка электропривода «в малом». Синтез регулятора положения
- •Процессы отработки больших перемещений в схеме с линейным регулятором положения
- •Формирование оптимальных процессов «в большом»
- •С вязь параметров схемы с показателями процессов
- •7.4. Высокоточный следящий электропривод Функциональная схема электропривода
- •Учет упругих податливостей механических звеньев в высокоточных электроприводах
- •Структурная схема неизменяемой части электропривода с учетом упругостей механической системы
- •Пример настройки одноконтурной системы регулирования положения
- •Идея подхода и метод решения задачи
- •Оптимизация параметров эмс для случая 2 1 / тм
- •Оптимизация параметров эмс для случая 1 / тм 2
- •7.6. Электроприводы с модальным управлением. Наблюдающие устройства
- •7.7. Выбор структуры и параметров наблюдающих устройств при ограниченной чувствительности датчиков положения
- •Список литературы
- •Оглавление
- •1. Электроприводы с релейно-контакторными системами управления 9
- •2. Способы формирования процессов пуска 33
- •3. Способы поддержания скорости электропривода 70
- •4. Регулируемые электроприводы постоянного тока 89
- •5. Регулируемые электроприводы 173
- •6. Перспективные электроприводы 259
- •7. Следящие электроприводы 276
4.8. Вентильный электропривод с параллельными регуляторами
В типовой схеме электропривода с подчиненным регулированием (п. 4.4) одновременная работа обратных связей по току якоря и по скорости приводит к большим статическим и динамическим ошибкам по скорости при приложении момента статической нагрузки. Чтобы система электропривода, работающая в условиях частых перегрузок, обеспечивала достижение наибольшей возможной производительности, необходимо в зоне допустимых нагрузок механическую характеристику электропривода иметь наиболее жесткую, а в зоне перегрузок – абсолютно мягкую. Для выполнения поставленного требования в системе электропривода на первом участке должна работать только обратная связь по скорости (или по напряжению), а на втором – только по току якоря. Поэтому с целью уменьшения статического и динамического падений скорости, вызванных приложением МС, нужно исключить на механической характеристике электропривода участки с совместной работой обеих обратных связей – по току и по напряжению на якоре.
Одним из вариантов решения поставленной задачи является введение двух независимо работающих контуров регулирования тока и напряжения на якоре, регуляторы которых подключаются ко входу вентильного преобразователя через бесконтактное логическое устройство [10].
Функциональная схема электропривода
На схеме (рис. 4.32) сигнал с выхода задатчика интенсивности ЗИ AJ, пропорциональный задаваемому на якоре двигателя М напряжению, сравниваясь с сигналом на выходе датчика напряжения ДН UV, поступает на вход регулятора напряжения РН AV. Независимо от РН работает другой регулятор тока РТ AA, на входе которого сравниваются сигнал задания максимального тока –UЗТ и сигнал с выхода датчика тока якоря ДТ UA. Выходы регуляторов РН и РТ подключены к входам логической схемы, собранной на диодах VD1 и VD2, источнике напряжения смещения +UСМ и резисторе R6. Выход логической схемы подключен к управляющему входу нереверсивного тиристорного преобразователя UZ.
При работе системы электропривода, когда IЯ < IМ, регулятор тока РТ насыщен до максимального положительного уровня избыточным сигналом –UЗТ. Уровень напряжения на выходе РН, задаваемый величиной UЗИ, меньше, чем на выходе РТ. Логическая схема, изображенная на рис. 4.32, всегда пропускает меньшее из входных напряжений, т.е. в рассматриваемом режиме диод VD2 закрыт, а VD1 – открыт, и на вход преобразователя подано напряжение только с выхода РН. Схема работает в режиме поддержания заданного напряжения на выходе преобразователя UZ.
При увеличении тока якоря IЯ до IМ выходное напряжение регулятора тока РТ начнет резко снижаться. Когда напряжение на выходе РТ станет ниже выходного напряжения РН, диод VD2 откроется, а VD1 – откроется. Схема работает в режиме поддержания (ограничения) заданного тока якоря. Если нагрузка на электропривод уменьшится, вновь работает контур регулирования напряжения.
Чтобы
увеличить быстродействие каналов
переключения тока и напряжения,
конденсаторы в цепях обратных связей
операционных усилителей, реализующих
регуляторы РН и РТ, включены не на выходы
регуляторов, а на общий выход логической
схемы.
