
- •Конспект лекций
- •Оглавление
- •Элементы зонной теории твердых тел
- •Статистика электронов и дырок в полупроводниках
- •Литература…………………………………………………………. .73
- •Приложение 2 Фазовая и групповая скорости, фононы………….. 87
- •1. Элементы зонной теории твердых тел
- •1.1 Электронный газ в периодическом потенциальном поле
- •1.2. Зоны Бриллюэна
- •1.3. Эффективная масса электрона
- •1.4. Зонная схема кристаллических тел - проводники, диэлектрики, полупроводники
- •2. Статистика электронов и дырок в полупроводниках
- •2.1. Собственные и примесные полупроводники
- •2.2. Зависимость концентрации свободных носителей в полупроводнике от положения уровня Ферми
- •2.3. Уровень Ферми и равновесная концентрация носителей в невырожденных собственных полупроводниках
- •2.4. Положение уровня Ферми и концентрация носителей в примесных полупроводниках
- •2.5. Неравновесные носители, рекомбинация носителей
- •2.6. Поверхностная рекомбинация
- •2.7. Уравнение непрерывности
- •3. Электропроводность твердых тел
- •3.1. Движение электронов под действием внешнего поля
- •3.2. Зависимость подвижности носителей заряда от температуры
- •3.3. Электропроводность чистых металлов
- •3.4. Электропроводность собственных полупроводников
- •3.5. Электропроводность примесных полупроводников
- •3.6. Диффузионные уравнения
- •4. Контактные явления
- •4.1. Контакт электронного и дырочного полупроводников
- •4.2. Равновесное состояние р-n-перехода
- •4.3. Зонная диаграмма р-n-перехода при положении внешнего поля
- •4.4. Вах тонкого р-n-перехода
- •5. Поверхностные явлении
- •5.1. Поверхностные состояния
- •5.2. Эффект поля. Мдп-структуры
- •5.3. Вольт-фарадная характеристика
- •6. Полевые транзисторы
- •6.1. Общие сведения
- •6.2. Полевые транзисторы с изолированным затвором
- •6.3 Статические характеристики
- •6.4. Основные параметры мдп-транзисторов
- •6.5 Полевые транзисторы с управляющим
- •7. Электрофизические свойства p-n-переходов и структур металл-диэлектрик-полупроводник
- •7.1. Барьерная и диффузионная емкость p-n-перехода
- •7.2. Механизмы пробоя p-n-переходов
- •7.3. Механизмы переноса заряда через тонкие диэлектрические пленки
- •Сильно-полевая туннельная инжекция и инжекционная модификация.
- •Литература
- •Прямоугольный барьер полубесконечной толщины
- •Приложение 2 Фазовая и групповая скорости, фононы
5. Поверхностные явлении
5.1. Поверхностные состояния
Рассмотрим процессы на поверхности полупроводника. В 1932 г. советским ученым Таммом было показано, что обрыв решетки приводит к возникновению разрешенных уровней в запрещенной зоне. Уровни Тамма возможны для идеальной поверхности полупроводника. Реальные поверхности покрыты слоем адсорбированных атомов и молекул. Эти примеси также создают поверхностные уровни, которые могут быть как донорными, так и акцепторными. Роль примесей могут играть и различные дефекты решетки. Разрешенные уровни в запрещенной зоне полупроводника на его поверхности называются поверхностными уровнями или поверхностными состояниями.
При высокой плотности поверхностных состояний они, взаимодействуя друг с другом, могут размыться в поверхностную зону. Электроны в этой зоне могут двигаться только вдоль поверхности.
Поверхностные состояния могут захватывать электроны или наоборот отдавать их, заряжаясь положительно или отрицательно. Заряжение поверхности полупроводника при заполнении поверхностных состояний сопровождается возникновением у поверхности слоя объемного заряда, нейтрализующего поверхностный заряд. Нейтрализация происходит путем притяжения к поверхности носителей со знаком заряда противоположным знаку заряда поверхности и отталкивания носителей одного знака. Вследствие этого поверхностный слой обедняется носителями того знака, которым заряжена поверхность и обогащается носителями противоположного знака. При этом наблюдается изгиб зон и возникает поверхностный объемный заряд. Если поверхность полупроводника заряжена отрицательно, то в приповерхностном слое зоны изгибаются вверх, а если положительно то низ.
5.2. Эффект поля. Мдп-структуры
Измерять объемный поверхностный заряд полупроводника можно с помощью поля, перпендикулярного поверхности. Для создания такого поля в полупроводнике, как правило, используют МДП-структуры (рис. 5.1).
Если к идеальной МДП-структуре прикладывается положительное или отрицательное напряжение, то в приповерхностной области полупроводника могут возникнуть три состояния: обеднение, инверсия и обогащение этой области носителями заряда.
Обедненная основными носителями область появляется в случае, когда на металлический электрод подается потенциал, по знаку совпадающий с основными носителями заряда (рис. 5.1, а и б). Вызванный таким потенциалом изгиб зон приводит к увеличению расстояния от уровня Ферми до дна зоны проводимости в полупроводнике n-типа и до потолка валентной зоны в полупроводнике p-типа. Увеличения этого расстояния сопровождается обеднением приповерхностной области основными носителями.
Когда на металлический электрод подается достаточно большой потенциал по знаку совпадающий с основными носителями (рис. 5.2, в и г), то расстояние от уровня Ферми до потолка валентной зоны в полупроводнике n-типа оказывается меньше расстояния до дна зоны проводимости (рис. 5.2, г), вследствие чего концентрация не основных носителей заряда (дырок) у поверхности полупроводника становится выше концентрации основных носителей и тип проводимости этой области меняется. Изменение типа проводимости полупроводника называется инверсией, а слои, в которых оно наблюдается, называются инверсионными слоями.
Если знак потенциала металлического электрода противоположен знаку заряда основных носителей тока в полупроводнике, то происходит притяжение основных носителей к поверхности и обогащение ими приповерхностного слоя (рис. 5.2, д и е).
С изменением концентрации основных носителей под действием внешнего поля в приповерхностном слое меняется и проводимость. Явление изменения поверхностной проводимости под действием поперечного поля называется эффектом поля.