
- •Тема 4.Физико-химические и пожароопасные
- •Тема 5. Основы радиохимии …………………………………. 77
- •Раздел II основные закономерности протекания химических процессов
- •Тема 6. Химическая термодинамика…………………….. 93
- •Тема 7. Химическая кинетика и равновесие ………… 108
- •Раздел III химия растворов. Дисперсные системы. Начала электрохимии
- •Тема 8. Основные свойства растворов ………………… 129
- •Тема 9. Растворы электролитов…………………………….. 147
- •Тема 10. Окислительно-восстановительные
- •Тема 11. Основы электрохимии…………………………….. 173
- •Тема 12. Химия дисперсных систем ……………………… 198
- •12.1. Классификация дисперсных систем ……………………………………199
- •Раздел 4. Физико-химические свойства органических веществ
- •Тема 13. Основные теоретические положения
- •Тема 14. Строение и свойства углеводородов ………. 224
- •Тема 15. Органическое топливо и его
- •Тема 16. Кислородсодержащие органические
- •Тема 17. Органические соединения,
- •Тема 18. Полимеры и полимерные материалы ……… 350
- •Тема 19. Химия огнетушащих веществ ………………… 380
- •Тема 20. Основы биохимии …………………………………… 396
- •Тема 21. Химия и защита окружающей среды ………. 406
- •Раздел I. Введение в общую химию
- •Тема 1. Основные понятия и законы химии
- •1.1. Основные понятия химии
- •1.2. Типы химических реакций
- •1.3. Стехиометрические законы химии
- •Тема 2. Периодический закон д.И. Менделеева и строение атома
- •2.1. История открытия Периодического закона
- •2.2. Структура периодической системы элементов
- •2.3. Строение атома
- •2.4. Понятие периодичности
- •Относительные электроотрицательности элементов ()
- •Тема 3. Химическая связь и типы взаимодействия молекул
- •3.1. Ионная связь
- •3.2. Ковалентная связь
- •3.3. Металлическая связь
- •3.4. Водородная связь
- •3.5. Межмолекулярные взаимодействия
- •3.6. Строение газов, жидкостей и твердых тел
- •3.7. Типы кристаллических решеток
- •Тема 4. Физико-химические и пожароопасные
- •4.1. Пожарная опасность металлов
- •Образуют водород
- •4.2.2. VII группа (подгруппа VII а) Галогены (солероды)
- •4.2.3. VI группа (подгруппа VI а) Кислород и халькогены (рождающие медь)
- •4.2.4. V группа (подгруппа V а) Подгруппа азота
- •4.2.5. IV группа (подгруппа IV а) Подгруппа углерода
- •4.2.6. III группа (подгруппа III а) Подгруппа алюминия
- •4.2.7. II группа (подгруппа II а) Щелочноземельные металлы
- •4.2.8. VIII группа (подгруппа VIII а) Инертные газы
- •4.2.9. Водород
- •Тема 5. Основы радиохимии
- •5.1. Краткая история открытия радиоактивности
- •5.2. Типы ионизирующего излучения
- •5.3. Обнаружение и измерение радиоактивности
- •5.4. Устойчивые и неустойчивые изотопы
- •5.5. Скорость радиоактивного распада. Период полураспада.
- •5.6. Естественная радиоактивность
- •5.7. Искусственные превращения
- •5.8. Типы ядерных реакций
- •5.8.1. Цепная реакция деления ядер
- •5.8.2. Ядерный синтез
- •5.8.3. Трансурановые элементы
- •5.9. Применение изотопов
- •5.9.1. Определение возраста образцов с помощью радиоуглерода
- •5.10. Практическое использование ядерной энергии
- •5.11. Радиоактивные отходы и их переработка
- •Раздел II основные закономерности протекания химических процессов
- •Тема 6. Химическая термодинамика
- •Раздел II включает в себя две основных темы: термодинамика химических процессов и кинетика химических процессов.
- •6.1. Основы термохимии
- •6.1.1. Основные понятия термодинамики
- •6.1.2. Первый закон термодинамики. Понятие энтальпии
- •6.1.3. Термохимические уравнения. Стандартные энтальпии образования и горения
- •6.1.4. Законы термохимии
- •6.1.5. Измерение тепловых эффектов реакций
- •6.2. Направленность химических процессов
- •6.2.1. Обратимые и необратимые процессы
- •6.2.2. Энтропия – мера неупорядоченности системы
- •6.2.3. Энергия Гиббса – критерий возможности протекания процесса
- •6.2.4. Расчеты с использованием термодинамических функций состояния
- •Тема 7. Химическая кинетика и равновесие
- •7.1. Скорость химической реакции
- •7.2. Факторы, влияющие на скорость реакции
- •7.2.1. Влияние концентрации реагентов на скорость реакции
- •7.2.2. Влияние температуры на скорость реакции
- •7.2.3. Влияние катализатора на скорость реакции
- •7.3. Типы сложных реакций
- •7.4. Обратимые реакции. Химическое равновесие
- •7.5. Факторы, влияющие на химическое равновесие. Принцип Ле Шателье
- •7.5.1. Влияние температуры на смещение равновесия
- •7.5.2. Влияние концентраций реагирующих веществ на смещение равновесия
- •7.5.3. Влияние давления на смещение равновесия
- •7.5.4. Влияние катализатора на смещение равновесия
- •7.5.6. Принцип Ле Шателье и управление химическими процессами
- •Раздел III химия растворов. Дисперсные системы. Начала электрохимии
- •Тема 8. Основные свойства растворов
- •8.1. Общая характеристика растворов
- •8.1.1. Способы выражения состава растворов
- •Поскольку число молей n может быть рассчитано по формуле
- •8.1.2. Физико-химические свойства воды
- •8.1.3. Механизмы процессов растворения
- •8.1.4. Термодинамика процесса растворения
- •8.1.5. Понятие растворимости
- •8.1.5.1. Растворимость газов в жидкостях
- •8.1.5.2. Растворимость жидкостей в жидкостях
- •8.1.5.3. Растворимость твердых тел в жидкостях
- •8.2. Коллигативные свойства растворов
- •8.2.1. Давление насыщенного пара
- •8.2.2. Давление пара над раствором. 1-й закон Рауля
- •8.2.3. Температура замерзания и температура кипения растворов.
- •8.2.4. Закон Рауля для многокомпонентных систем
- •8.2.5. Разделение многокомпонентных систем
- •8.2.6. Осмос
- •Тема 9. Растворы электролитов
- •9.1. Теория электролитической диссоциации
- •9.1.2. Диссоциация кислот, гидроксидов, солей
- •Количественные характеристики процесса диссоциации
- •9.1.4. Сильные и слабые электролиты
- •9.1.5. Водородный показатель рН
- •9.2. Растворы солей в воде
- •9.2.1. Произведение растворимости
- •9.2.2. Условия осаждения и растворения солей
- •9.2.3. Реакции солей в растворе. Гидролиз солей
- •9.2.4. Буферные растворы
- •Тема 10. Окислительно-восстановительные реакции
- •10.1. Понятие окислительно-восстановительных реакций
- •10.2. Степень окисления
- •10.3. Основные положения теории окисления - восстановления
- •10.4. Важнейшие окислители и восстановители
- •10.4.1. Группа восстановителей
- •10.4.2. Группа окислителей
- •10.5. Классификация окислительно-восстановительных реакций
- •11.1. Гальванические элементы
- •11.1.1. Электродный потенциал
- •11.1.2. Стандартный водородный электрод
- •11.1.3. Стандартные электродные потенциалы
- •11.1.4. Уравнение электродного потенциала (уравнение Нернста)
- •11.1.5. Электрохимический ряд напряжений
- •11.1.6. Механизм возникновения электрического тока в гальванических элементах
- •11.1.7. Химические источники тока
- •11.1.8. Концентрационные элементы
- •11.1.9. Топливные элементы
- •11.2. Коррозия металлов
- •11.2.1. Основные виды коррозии металлов
- •11.2.2. Защита металлов от коррозии
- •11.3. Электролиз
- •Тема 12. Химия дисперсных систем
- •12.1. Классификация дисперсных систем
- •12.2. Способы получения коллоидов
- •Поверхностное натяжение жидкостей на границе с воздухом
- •12.4. Сорбционные процессы
- •12.5. Молекулярно-кинетические свойства коллоидных растворов
- •12.6. Оптические свойства коллоидных растворов
- •12.7. Строение коллоидных частиц
- •12.8. Электрокинетические свойства коллоидных растворов
- •12.9. Устойчивость коллоидных систем
- •12.10. Разрушение коллоидных систем
- •12.10.1. Методы разрушения аэрозолей
- •Раздел 4. Физико-химические свойства органических веществ
- •Тема 13. Основные теоретические положения
- •Органической химии
- •13.1. Теория химического строения а.М. Бутлерова
- •13.2. Классификация органических соединений
- •13.3. Типы органических реакций
- •Тема 14. Строение и свойства углеводородов
- •14.1. Ациклические предельные углеводороды (алканы)
- •1. Основные реакции алканов – реакции замещения водорода, идущие по свободно-радикальному механизму.
- •14.2. Ациклические непредельные углеводороды
- •Непредельные углеводороды
- •14.3. Галогенпроизводные углеводородов
- •14.4. Насыщенные циклические соединения (циклоалканы)
- •14.5. Ароматические углеводороды (арены)
- •14.5.1. Конденсированные циклические системы
- •Тема 15. Органическое топливо и его переработка
- •15.1. Твердое топливо и продукты его переработки
- •15.1.1. Сухая перегонка угля (пиролиз)
- •15.1.2. Газификация угля
- •15.1.3. Гидрогенизация угля
- •15.2. Жидкое топливо и продукты его переработки
- •15.2.1. Первичная переработка нефти
- •15.2.2. Вторичная переработка нефти
- •Крекинг
- •Риформинг
- •Пиролиз углеводородов
- •15.3. Газовое топливо и продукты его переработки
- •Тема 16. Кислородсодержащие органические соединения
- •16.1. Спирты
- •Классификация спиртов
- •16.1.1. Предельные одноатомные спирты
- •16.1.2. Многоатомные спирты
- •16.1.3. Фенолы
- •16.2. Простые эфиры спиртов
- •16.3. Органические перекисные соединения
- •16.4. Альдегиды и кетоны
- •16.5. Карбоновые кислоты
- •Классификация карбоновых кислот
- •16.5.1. Предельные одноосновные карбоновые кислоты
- •16.5.2. Непредельные карбоновые кислоты
- •16.5.3. Высшие жирные кислоты
- •16.5.4. Мыла
- •16.6. Сложные эфиры
- •16.6.1. Жиры
- •16.6.2. Воски
- •Тема 17. Органические соединения,
- •17.1.1. Тиолы
- •17.1.2. Органические сульфиды
- •17.1.3. Эфиры серной кислоты
- •17.2. Азотсодержащие органические соединения
- •Первичные алифатические амины
- •Вторичные алифатические амины
- •Первичные ароматические амины
- •Химические свойства солей диазония
- •17.2.2. Цвет и строение вещества
- •17.2.3. Нитросоединения
- •17.3. Краткая характеристика взрывчатых веществ
- •17.3.1. Параметры горения и взрывов вв
- •Параметры детонационной волны некоторых вв
- •Теплота взрыва некоторых вв
- •17.3.2. Чувствительность взрывчатых веществ
- •Чувствительность к тепловым воздействиям
- •Температура вспышки вв
- •Чувствительность к механическим воздействиям
- •Чувствительность бризантных вв к удару
- •Чувствительность инициирующих вв к удару
- •17.3.3. Химическая стойкость взрывчатых веществ
- •17.3.4. Условия распространения детонации и факторы, влияющие на ее скорость
- •Критический диаметр некоторых вв
- •17.3.5. Краткие сведения об основных взрывчатых веществах
- •Инициирующие взрывчатые вещества
- •Бризантные взрывчатые вещества
- •Тетрил или тринитрофенилметилнитрамин -
- •Метательные взрывчатые вещества, или пороха
- •Тема 18. Полимеры и полимерные материалы
- •Классификация полимеров
- •Отличительные особенности полимеров
- •18.1. Способы получения полимеров
- •18.1.1. Реакции полимеризации
- •18.1.2. Реакции поликонденсации
- •18.2. Деструкция полимеров
- •18.3. Факторы, влияющие на термостойкость полимеров
- •18.4. Полимерные материалы
- •18.4.1. Каучуки
- •18.4.2. Пластмассы
- •Тема 19. Химия огнетушащих веществ
- •19.1. Способы прекращения горения
- •Отв и способы прекращения горения
- •Применение отв для тушения пожаров различных классов
- •19. 2. Вода как отв
- •Преимущества воды как отв
- •Недостатки воды как отв
- •Если угол не устанавливается, то смачивание полное, капля тонкой пленкой растекается по поверхности твердого тела.
- •Пути повышения эффективности воды как отв
- •19.3. Пены как отв
- •19.3.1. Общая характеристика пенообразователей
- •19.3.2. Химическая пена
- •19.3.3. Воздушно-механическая пена
- •19.3.2. Пенообразователи целевого назначения
- •19.4. Негорючие газы как отв
- •19.5. Ингибиторы горения
- •19.5.1. Хладоны как отв
- •19.5.2. Тушение порошковыми составами
- •Тема 20. Основы биохимии
- •20.1. Углеводы
- •20.2. Жиры
- •20.3. Белки
- •Типы белков, присутствующих в человеческом теле, и их функции
- •20.4. Метаболизм пищевых продуктов
- •20.5. Химические элементы в организме человека
- •Элементный состав взрослого человека с массой 70 кг
- •Источники, функции и признаки недостаточности в организме
- •20.6. Витамины
- •Источники, функции и внешние проявления недостаточности
- •20.7. Борьба организма с ядами
- •Тема 21. Химия и защита окружающей среды
- •21.1. Природные и антропогенные источники загрязнения окружающей среды
- •21.2. Виды загрязнений воды и их контроль
- •21.2.1. Вода как природный ресурс
- •21.2.2. Виды загрязнений воды
- •21.2.3. Методы очистки и обработки воды
- •21.2.3.1. Очистка воды в природе
- •21.2.3.2. Жесткость воды и способы ее устранения
- •20.2.3.3. Очистка и водоподготовка природных вод
- •21.2.3.4. Очистка бытовых и промышленных вод
- •21.3. Борьба с загрязнениями воздуха
- •21.3.1. Строение и состав атмосферы
- •21.3.2. Виды загрязнений воздуха
- •21.3.3. Защита воздушного бассейна от загрязнений
- •21.4. Экологические проблемы применения огнетушащих веществ
- •Литература
6.2. Направленность химических процессов
6.2.1. Обратимые и необратимые процессы
Химическая термодинамика позволяет не только рассчитывать и определять тепловые эффекты различных процессов, но и оценивать реакционную способность веществ. Например, известно, что карбид кальция СаС2 может сколь угодно долго храниться в сухом виде, но при соприкосновении с водой бурно реагирует с выделением взрывоопасного газа ацетилена и большого количества тепла: СаС2 + Н2О С2Н2 + Са(ОН)2 + Q. В чем причина этого?
Для решения вопроса о возможности протекания реакции необходимо иметь количественный критерий возможности осуществления того или иного процесса. С его помощью можно выяснить, насколько полно идет реакция, как добиться увеличения степени превращения исходных веществ в продукты реакции. Если вещество не реакционноспособно, то можно ли создать условия, при которых оно будет взаимодействовать с нужными веществами. Такой критерий поможет определить влияние на протекание реакции внешних условий: давления, температуры и других факторов, и даже ответить на вопрос, может ли данная реакция протекать в обратном направлении.
Сначала введем некоторые новые понятия.
Самопроизвольно протекающие процессы – это процессы, протекающие без затраты работы извне. Примерами самопроизвольно протекающих физических процессов будут расширение газа, диффузия, испарение, а не самопроизвольно протекающих – сжатие газа.
Для химических реакций самопроизвольно протекающими являются, как правило, необратимые реакции.
Таблица 6.3.
Обратимые и неоратимые химические реакции
Химические реакции |
|
Обратимые |
Необратимые |
Реакции, протекающие при данных условиях как в прямом, так и в обратном направлении, называются обратимыми. |
Реакции, протекающие при данных условиях в одном направлении, практически до полного исчерпания, называются необратимыми. |
А + В С + D |
А + В С + D |
Н2 + 0,5О2 Н2О при низких t Н2О Н2 + 0,5О2 при t > 15000С |
1. ВаCl2 + Na2SO4 BaSO4+ 2NaCl 2. Zn + H2SO4 ZnSO4 + H2 3. NaOH + HCl NaCl + H2O |
Признаками необратимых химических реакций (правило Бертолле) являются: удаление продуктов реакции из сферы взаимодействия в виде осадка или газа (реакции 1 и 2), образование мало диссоциирующих в растворе соединений (реакция 3).
В результате обратимого процесса наступает состояние равновесия.
В чем же причина определенной направленности химических процессов, что влияет на химическое равновесие?
6.2.2. Энтропия – мера неупорядоченности системы
Большинство реакций, с которыми мы встречаемся в быту, которые происходят в природе или используются в технологии получения веществ, сопровождаются выделением тепла. Около 95 % всех неорганических соединений образуются при стандартных условиях, и при этом выделяется тепло.
Эти и другие соображения позволили в середине 19 века французскому химику П. Бертло и датскому химику Х. Томсену сформулировать следующий принцип:
"Любой химический процесс должен сопровождаться выделением тепла" (принцип Бертло, 1867).
Принцип Бертло возник из-за попытки найти аналогию с механическими системами: каждый знает, что шар, находящийся на верху наклонной плоскости, стремится скатиться вниз, при этом его потенциальная энергия уменьшается. Обратно шар можно вернуть, только затратив работу.
Бертло и Томсен полагали, что химические реакции будут идти, как и скатывающийся шар, только в направлении уменьшения энергосодержания, т.е. с выделением энергии в виде тепла.
Однако существуют множество эндотермических реакций, в ходе которых смесь химических соединений забирает тепловую энергию из окружающей среды и превращает ее в химическую энергию, запасаемую продуктами реакции. Таким образом, химическая энергия продуктов реакции оказывается выше, чем у исходных веществ. Фактически все эндотермические реакции противоречат принципу движения системы в сторону уменьшения химической энергии.
Принцип Бертло является ограниченным и по той причине, что не все экзотермические реакции проходят до конца, и при определенных условиях могут протекать в обратном направлении.
Таким образом, для химических процессов изменение внутренней энергии системы уже не является единственным критерием, по которому можно судить, возможна данная реакция, или нет. Здесь действует еще одна "сила" не менее могущественная, чем стремление системы к понижению внутренней энергии. Эта "сила" может с успехом противодействовать этому стремлению и даже заставить систему увеличить свой запас химической энергии за счет теплоты окружающих тел.
Что же это за "сила"?
Существуют процессы, которые не связаны с энергетическими изменениями, но при этом протекают самопроизвольно. Например, процесс смешения двух газов. При удалении перегородки, разделяющей два газа, движущей силой их смешения не является энергия, но процесс идет самопроизвольно.
В 1865 году немецкий ученый Рудольф Клаузиус предложил критерий, который определяет самопроизвольность протекания процесса. Наблюдение природных явлений показало, что чаще всего самопроизвольно протекают процессы, в которых происходит увеличение степени неупорядоченности системы. В примере со смешивающими газами Клаузиус предположил, что газы, разделенные перегородкой, имеют больший порядок, чем при отсутствии перегородки, когда оба газа смешаны.
Таким образом, существует критерий, связанный со стремлением любой системы к хаосу, к переходу от порядка к беспорядку. Проявляется эта тенденция тем сильнее, чем больше частиц содержит система. В химических реакциях всегда участвует огромное число частиц, которые всегда находятся в движении, поэтому стремление к беспорядку в них очень велико.
Состояние вещества определяют его |
|
макросостояние |
микросостояние |
характеризуется определенными значениями его макроскопических свойств (температура, давление, объем) |
характеризуется определенным состоянием каждой частицы (координатами, скоростью перемещения по всем направлениям) |
Очевидно, что макросостояние тем более вероятно, чем большим числом микросостояний оно описывается.
Каждому макросостоянию соответствует большое число микросостояний, и это число называется термодинамической вероятностью данного макросостояния ().
Термодинамическая вероятность состояния системы, состоящей из 10 молекул приблизительно равна 1000. А только в 1 см3 газа содержится 2,71019 молекул, и величина будет огромной.
Для того, чтобы перейти к более удобным числам, была введена функция S – энтропия (от греч. "внутреннее превращение").
Уравнение Больцмана:
S = k ln, Дж/К, где
k = 1,3810-23 Дж/К – постоянная Больцмана.
Отнесенная к 1 молю эта величина составляет
S = R ln, Дж/мольК, где
R = kNA – универсальная газовая постоянная.
Функция S – энтропия – мера беспорядка.
Самопроизвольный процесс, проходящий без изменения энергетического запаса системы, совершается только в направлении, при котором порядок в системе уменьшается, или (что то же самое) беспорядок в системе увеличивается, при этом система переходит в более вероятное состояние.
Второй закон термодинамики также является постулатом. Формулировка II закона термодинамики:
Самопроизвольный процесс, проходящий без изменения энергетического запаса системы (т.е. в изолированной системе), совершается только в направлении возрастания энтропии Sизол > 0.
Что такое порядок и беспорядок (т.е. низкая и высокая энтропия) в химических системах? Самый большой порядок – в идеальном кристалле при температуре абсолютного нуля.
Третий закон термодинамики:
Энтропия идеального кристалла при абсолютном нуле температур равна нулю.
В случае неизолированных систем энтропия может как увеличиваться, так и уменьшаться.
I.
Энтропия всегда возрастает при увеличении температуры.
II. Физические процессы
Энтропия возрастает S > 0 при
1) расширении газов;
2) испарении;
3) плавлении;
4) сублимации;
5) растворении кристаллических веществ.
Энтропия уменьшается S < 0 при
1) сжатии газов;
2) конденсации;
3) кристаллизации.
III. Химические реакции
Энтропия возрастает S > 0 в случае
1) Sпар > Sжидк > Sтв;
2) в ходе реакции объем газообразных веществ увеличивается
2Н2О (г) 2Н2 (г) + О2 (г)
С(тв) + СО2 (г) 2СО (г)
Энтропия уменьшается S < 0 если
в реакции объем газообразных веществ уменьшается
2Al (тв) + 3Сl2 (г) 2AlCl3 (тв)
Как внутренняя энергия и энтальпия, энтропия является функцией состояния и не зависит от процесса перехода системы из одного состояния в другое.
Стандартные значения энтропии S [Дж/мольК] приведены в справочниках термодинамических величин.
Расчет энтропии для реакции
аА + bB cC + dD
может быть проведен следующим образом:
Sр-и = [сS(С) + dS(D)] - [аS(А) + bS(В)]/
Следует обратить внимание, что энтропия простых веществ нулю не равна, и для всех веществ имеет положительное значение (см.табл.6.1.).