
- •Интеллектуальные системы. Основные классы систем и задач. Понятие иис
- •Критерии интеллектуальности ис
- •История развития иис
- •Классификация задач, решаемых иис
- •Классы иис
- •Символьная обработка и вычислительный интеллект в задачах искусственного интеллекта. Символьная обработка в задачах искусственного интеллекта
- •Вычислительный интеллект в задачах искусственного интеллекта
- •Экспертные системы. Архитектура систем. Экспертные системы
- •Архитектура экспертной системы
- •Архитектура нечеткой экспертной системы.
- •Архитектура нейронной экспертной системы.
- •Архитектура мягкой экспертной системы.
- •Экспертная деятельность
- •Вычисление нечеткой импликации:
- •Архитектура нечёткой экспертной системы
- •Искусственная нейронная сеть. Математическая модель нейрона.
- •Функция активации. Виды нейронных сетей. Функция активации.
- •Виды нейронных сетей.
- •Нс без обратных связей
- •Полносвязные сети
- •Обучение нс. Решение задачи классификации. Обучение нс
- •Решение задачи классификации
- •Обучение нс. Решение задачи кластеризации.
- •Обучение нс. Решение задачи аппроксимации.
- •Нейронная сеть как универсальный аппроксиматор.
- •Эффективность аппроксимации с помощью нейронных сетей и систем нечеткого вывода.
- •Линейно-сепарабельные задачи.
- •Нейронная сеть как универсальный аппроксиматор.
- •Сети Кохонена. Алгоритм обучения «победитель забирает все» Сети Кохонена
- •Алгоритм обучения «победитель забирает все»
- •Дельта-правило в машинном обучении
- •Алгоритм обратного распространения ошибки.
- •Архитектура нейронной экспертной системы
- •Эволюционные вычисления. Классы эволюционных вычислений.
- •История эволюционных вычислений
- •Классы эволюционных вычислений.
- •Обобщение идей эволюционных вычислений
- •Понятие генетического алгоритма.
- •3 Основные положения в теории эволюции (Теория «Происхождения Видов» 1859г. Дарвина):
- •Кодировка хромосом. Оператор отбора.
- •Операторы рекомбинации и мутации. Оператор скрещивания (оператор кроссовера)
- •Оператор мутации
- •Сходимость га.
- •Теорема схем.
- •Гибридные интеллектуальные системы.
- •Методы гибридизации.
- •Способ 1
- •Способ 2 (метод -срезов)
- •Понятия t-нормы и s–конормы.
- •Общие свойства t – норм и s — конорм
- •Пары норм и конорм
- •Определения и-или-нейронов и нечеткой нейронной сети.
- •Нечеткая нейронная сеть архитектуры anfis
- •Пример функционирования нечеткого нейронного контроллера
- •Определить входные переменные.
- •Пример. Нечёткий регулятор для стиральной машины (архитектура anfis)
- •Алгоритмы обучения для неч-ой нейр-ой сети контроллера
- •Нечёткий контроллер на основе нейронной сети (nnflc).
- •Архитектура anfis (адаптивная нейронная сеть, основанная на системе нечёткого вывода).
- •Нейронная сеть для нечётких (nndfr)
- •Нечёткие нейронные сети с генетической настройкой.
- •Эффективность аппроксимации с помощью нейронных сетей и систем нечеткого вывода.
- •Моделирование линейного нейрона
- •Моделирование многослойного перцептрона
- •Моделирование сети Кохонена
- •Пример генетической оптимизации при решении задач
Архитектура экспертной системы
Рисунок 1 Архитектура экспертной системы
Экспертная система состоит из следующих компонент:
База знаний предназначена для хранения экспертных знаний о предметной области, используемых при решении задач экспертной системой. База знаний состоит из набора фреймов и правил-продукций:
фреймы используются в базе знаний для описания объектов, событий, ситуаций, прочих понятий и взаимосвязей между ними. Фрейм – это структура данных, состоящая из слотов (полей).
правила используются в базе знаний для описания отношений между объектами, событиями, ситуациями и прочими понятиями. На основе отношений, задаваемых в правилах, выполняется логический вывод. В условиях и заключениях правил присутствуют ссылки на фреймы и их слоты.
База данных предназначена для временного хранения фактов или гипотез, являющихся промежуточными решениями или результатом общения системы с внешней средой, в качестве которой обычно выступает человек, ведущий диалог.
Машина логического вывода – механизм рассуждений, оперирующий знаниями и данными с целью получения новых данных из знаний и других данных, имеющихся в рабочей памяти. Машина логического вывода может реализовать рассуждения в виде:
дедуктивного вывода (прямо, обратного, смешанного)
нечеткого вывода
вероятностного вывода
Подсистема общения служит для ведения диалога с пользователем, в ходе которого ЭС запрашивает у пользователя необходимые факты для процесса рассуждения, а также, дающая возможность пользователю в какой-то степени контролировать и корректировать ход рассуждений ЭС.
Подсистема объяснений необходима для того, чтобы дать возможность пользователю контролировать ход рассуждений и, может быть, учиться у ЭС.
Подсистема приобретения знаний служит для корректировки и пополнения базы знаний. В простейшем случае это – интеллектуальный редактор базы знаний, в более сложных ЭС – средства для извлечения знаний из баз данных, неструктурированного текста, графической информации и тд.
Архитектура нечеткой экспертной системы.
Нечеткая ЭС – экспертная система, которая для вывода решения использует совокупность нечетких функций принадлежности и правил. Функция принадлежности выражает степень соответствия элемента некоторому понятию. Реальным источником ее формирования являются расспросы эксперта и обобщение статистических данных.
В представлении знаний используются понятия нечётких множеств, для использования знаний – нечёткая логика. Основным методом является метод нечетких выводов. Применение знаний не ограничивается только выводами. Кроме выводов серьезной проблемой являются оценки и суждения. В качестве моделей оценок и суждений экспертов на основе эмпирических знаний эффективны идеи нечётких изменений и нечёткого интегрирования.
База знаний хранит в себе знания в форме нечётких продукций и лингвистических переменных.
Лингвистическая переменная — переменная, которая может принимать значения фраз из естественного или искусственного языка.
Способ обработки знаний – логический вывод по нечётким продукциям.