Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_KAKIE_NADO.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
452.36 Кб
Скачать

Классы иис

Системы с интеллектуальным интерфейсом (коммуникативные способности):

  1. Интеллектуальные БД – БД, которые отличаются от обычных возможностью выборки по запросу информации, которая может явно не храниться, а выводиться из имеющейся БД (например, вывести список товаров, цена которых выше отраслевой).;

  2. Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на машинный уровень представления знаний. При этом осуществляется распознавание и проверка написанных слов по словарям и синтаксическим правилам. Данный интерфейс облегчает обращение к интеллектуальным БД, а также голосовой ввод команд в системах управления.;

  3. Гипертекстовые системы предназначены для поиска текстовой информации по ключевым словам в базах;

  4. Контекстные системы – частный случай гипертекстовых и естественно-языковых систем;

  5. Когнитивная графика. Данные системы позволяют осуществлять взаимодействие пользователя ИИС с помощью графических образов.

Экспертные системы (решение сложных задач)это ИИС, предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области:

  1. Классифицирующие системы – ЭС распознавания ситуаций, в них определяют принадлежность анализируемой ситуации к некоторому классу.

  2. Доопределяющие системы – задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. ЭС должна доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения;

  3. Трансформирующие системы – ЭС, которые предполагают повторяющееся преобразование знаний в процессе решения задач, что связано с характером результата, который нельзя заранее предопределить, а также с динамичностью самой проблемной области;

  4. Многоагентные системы – это динамические ЭС, основанные на интеграции нескольких разнородных источников знаний. Эти источники обмениваются между собой получаемыми резуль-татами в ходе решения задач.

Самообучающиеся системы (способность к самообучению):

  1. Индуктивные системы позволяют обобщать примеры на основе принципа индукции "от частного к общему";

  2. Нейронная сеть – модель нервной системы, которая представляет собой совокупность большого числа сравнительно простых элементов – нейронов, топология соединения которых зависит от типа сети;

  3. Системы, основанные на прецедентах. Прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. В них допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности;

  4. Информационные хранилища отличаются от интеллектуальных баз данных, тем, что представляют собой хранилища значимой информации, регулярно извлекаемой из оперативных баз данных.

  1. Символьная обработка и вычислительный интеллект в задачах искусственного интеллекта. Символьная обработка в задачах искусственного интеллекта

С 60-х гг. прошлого века стало развиваться символьное направление, которое предлагало решение интеллектуальных задач, изобретённые человеком. Данное направление стали называть искусственным интеллектом. Задачи связаны с компьютерной лингвистикой и с решением различных игр на компьютере. Методы – методы ограниченных переборов. Для развития игровой ситуации формировалось дерево решений, и исследовались алгоритмы перебора в глубину и в ширину. Ограничители перебора – оценочные функции (эвристики).

Лисп – первый язык символьных вычислений. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами. От умения выделить только существенную информацию зависит эффективность и результативность решения задачи.

Основное применение символьной логики — это решение задач по выработке правил. Большинство исследований останавливается как раз на невозможности хотя бы обозначить новые возникшие трудности средствами выбранных на предыдущих этапах символьных систем, тем более решить их и тем более обучить компьютер решать их или хотя бы идентифицировать и выходить из таких ситуаций.

Символьная обработка позволяет эффективно работать с такими структурами, как:

  • предложения естественного языка,

  • значения слов и предложений,

  • нечеткие понятия и т.д.,

и на их основе принимать решения, проводить рассуждения и осуществлять другие, свойственные человеку способы обращения с данными. В качестве типичного примера служат экспертные системы, содержащие профессиональные знания по некоторой специальности, программы, работающие с естественным языком и т.д.

Примеры ЭС:

  • MYCI – медицинская система, использовала специальные оценки достоверности

  • PROSPECTOR – геологическая система, использовала формулу баесовских вероятностей.

  • WolframAlpha — поисковая система, интеллектуальный «вычислительный движок знаний»)

В этих применениях предполагается представление в подходящей форме символьных и данных со сложной структурой. Работа с ними часто ведётся в заранее непредсказуемых ситуациях. Характерно, что кроме сложной структуры таким данным свойственно разнообразие форм их выражения. Большая часть объектов данных конкретной проблемной области может иметь отличное от других индивидуальное строение. Однако при их обработке поведение программы определяется на основе задаваемых на более общем уровне принципов, законов и правил, а также на основе типов ситуаций и образцов, распознаваемых в этих ситуациях.

Например, в играющей в шахматы программе невозможно заранее учесть все позиции. Анализ игры осуществляется на основе классификации позиций, распознавания стандартных позиций, определения характеристик позиций, построения оценок текущей позиции и использования ограниченного набора стратегий, правил принятия решения и т.д. Так программа может оценить такие позиции, которые программист специально не предусматривал. При удачном стечении обстоятельств программа может победить своего создателя.

С помощью структур, имеющих множество форм представления, стало возможным решать задачи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]