Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_KAKIE_NADO.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
452.36 Кб
Скачать
  1. Интеллектуальные системы. Основные классы систем и задач. Понятие иис

ИИС – такая компьютерная система, которая моделирует любое из свойств естественного интеллекта (совокупность возможностей живых организмов):

  • Условный рефлекс

  • Сложная программа поведения

  • Мышление

Свойства ИИС:

  • Обучаемость

  • Адаптивность (адекватность) – согласование поведения с окружающей средой.

  • Умение найти верное решение в новой ситуации.

Примеры ИИС:

  • Систем распознавания рукописного текста

  • Система распознавания речи

  • Автопилоты взлёта-посадки.

  • Программы перевода.

  • Экспертные системы.

Критерии интеллектуальности ис

Критерием интеллектуальности – измерительная процедура, позволяющая установить, является ли объект пониманием данного интеллектуального свойства. (Пр. Измеритель человеческого интеллекта – тест IQ).

Критерий обучаемости строится как статистическая процедура, которая должна зафиксировать, что в большинстве текстов достигается нужное поведение. (Пр. Распознавание рукописного текста: критерий обучаемости – количество правильно распознанных текстов на обучаемой выборке).

Критерий адаптивности – измеримая процедура для адаптивности, она зависит от заданной ситуации и строится каждый раз по-разному. (Пр. Для ЭС, выполняющих разные виды диагностики, ЭС должна работать на уровне человека-эксперта).

Способность решать новые задачи – процедура проверки способности системы решать задачу, за счёт нарушения ограничений первичной заданной ситуации. (Пр. Для лабиринтных задач – изменение характера препятствий).

История развития иис

Первые работы по ИИС были сделаны в конце 40-х гг. прошлого столетия. В связи со слабым развитием компьютеров это были системы, моделирующие отдельные свойства зрения, слуха, отдельные функции мозга, т.е. развивалось бионическое направление.

С 60-х гг. прошлого века стало развиваться новое символьное направление, которое предлагало решение интеллектуальных задач, изобретённые человеком. Данное направление стали называть искусственным интеллектом. Задачи связаны с компьютерной лингвистикой (направлением ИС: цель – использование математических моделей для описания естественных языков) и с решением различных игр на компьютере. Методы – методы ограниченных переборов. Для развития игровой ситуации формировалось дерево решений, и исследовались алгоритмы перебора в глубину и в ширину. Ограничители перебора – оценочные функции (эвристики).

В текущем столетии развиваются гибридные интеллектуальные системы, объединяющие 2 данных направления. Развитие задач робототехники, создание реальных интеллектуальных устройств потребовало интеграции символьных и вычислительных методов. Развитие мягких вычислений.

Бионическое – символьное – логические методы – экспертные системы – вычислительный интеллект – гибридные системы.

Классификация задач, решаемых иис

В задачах анализа множество решений может быть перечислено и включено в систему. В задачах синтеза множество решений потенциально не ограничено и строится из решений компонент или подпроблем.

Задачи анализа

  1. Интерпретация данных – процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Это одна из традиционных задач для экспертных систем. Обычно предусматривается многовариантный анализ данных.

  2. Диагностика – процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры («анатомии») диагностирующей системы.

  3. Поддержка принятия решений — это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения. Эти ЭС помогают специалистам выбрать и/или сформировать нужную альтернативу среди множества выборов при принятии ответственных решений.

Задачи синтеза

  1. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Спецификация – весь набор необходимых документов—чертёж, пояснительная записка и т.д. Основные проблемы — получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и в ещё большей степени перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.

  2. Планирование – нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

  3. Управление – функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуществляют управление поведением сложных систем в соответствии с заданными спецификациями.

Комбинированные задачи

  1. Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность – в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста.

  2. Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

  3. Обучение – использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабости в познаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]