Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
идз-ДМ.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
3.3 Mб
Скачать

12.8 Комплекс кубов

Несостоятельность графических методов при большом числе переменных компенсируются различными аналитическими методами представления булевых функций. Одним из таких представлений комплекс кубов, использующий терминологию многомерного логического пространства в сочетании со специально разработанной символикой.

Комплекс кубов функции определяется как объединение множеств всех её s-кубов (s=0, 1,…, n), т.е. , причём некоторые из могут быть пустыми. Для записи s-кубов и минитермов функции от n переменных используются слова длины n, буквы которых соответствуют всем n переменным. Входящие в минитерм переменные называются связанными и представляются значениями, при которых минитерм равен единице (1 для и 0 для ). Не входящие в минитерм переменные являются свободными и обозначаются через х. Например, 2-куб функции пяти переменных, соответствующий минитерму , запишется как ( ). 0-кубы, соответствующие конституентам единицы, представляются наборами значений переменных, на которых функция равна единице. Очевидно, в записи s-куба всегда имеется s свободных переменных. Если все n переменных свободны, что соответствует n-кубу, то это означает тождественность единице рассматриваемой функции. Таким образом, для функции, не равных тождественно единице, .

Множество всех s-кубов записывается как совокупность слов, соответствующих каждому s-кубу. Для удобства будем располагать слова s-кубов в столбцы, а их совокупность заключать в фигурные скобки. Например, комплекс кубов, соответствующий представлению функции на трёхмерном кубе (рис. 13, а), выражается как , где

; ;

Для сравнения на рис. 13, б изображён комплекс кубов в принятых обозначениях.

а)

б)

Рисунок 13

Комплекс кубов образует максимальное покрытие функции. Исключая из него все те s-кубы, которые покрываются кубами высшей размерности, получаем покрытия, соответствующие тупиковым формам. Так, для рассматриваемого примера (рис. 13) имеем тупиковое покрытие

которое соответствует функции . В данном случае это покрытие является и минимальным.

Для двух булевых функций операция дизъюнкции соответствует объединению их комплексов кубов , а операция конъюнкции - пересечению комплексов кубов . Отрицанию функции соответствует дополнение комплекса кубов, т.е. , причём определяется всеми вершинами, на которых функция принимает значение 0. Таким образом, имеет место взаимно-однозначное соответствие (изоморфизм) между алгеброй булевых функций и алгеброй множеств, представляющих комплексы кубов.

1.9 Постановка задачи минимизации

Минимизация схемы в булевом базисе сводится к поиску минимальной дизъюнктивной формы, которой соответствует минимальное покрытие. Общее число букв, входящих в нормальную форму, выражается ценой покрытия , где - число s-кубов, образующих покрытие данной функции от n переменных.

Обычно задача минимизации решается в два шага. Сначала ищут сокращённое покрытие, которое включает все s-кубы максимальной размерности, но не содержит ни одного куба, покрывающегося каким – либо кубом этого покрытия. Соответствующую дизъюнктивную нормальную форму называют сокращённой, а её минитермы – простыми импликантами. Для данной функции сокращённое покрытие является единственным, но оно может быть избыточным вследствие того, что некоторые из кубов покрываются совокупностями других кубов.

На втором шаге осуществляется переход от сокращённой к тупиковым дизъюнктивным нормальным формам, из которых выбираются минимальные формы. Тупиковые формы образуются путём исключения из сокращённого покрытия всех избыточных кубов, без которых оставшаяся совокупность кубов ещё образует покрытие данной функции, но при дальнейшем исключении любого из кубов она уже не покрывает множества всех вершин, соответствующих единичным значениям функции, т.е. перестаёт быть покрытием.

Куб сокращённого покрытия, который покрывает вершины данной функции, не покрываемые никакими другими кубами, не может оказаться избыточным и всегда войдёт в минимальное покрытие. Такой куб, как и соответствующая ему импликанта, называют экстремалью (существенной импликантой), а покрываемые им вершины – отмеченными вершинами. Множество экстремалей образует ядро покрытия. Ясно, что при переходе от сокращённого покрытия к минимальному прежде всего следует выделить все экстремали. Если множество экстремалей не образует покрытия, то оно дополняется до покрытия кубами из сокращённого покрытия.

Приведённые определения иллюстрируются на рис. 10, где сокращённое покрытие (рис. 10,а) и минимальные покрытия (рис. 10,б) и (рис.10,в) выражаются следующим образом:

; ;

Сокращённая форма представляет собой дизъюнкцию четырёх простых импликант, т.е. . Экстремалями являются простые импликанты и , которым соответствуют 1-кубы (10х) и (01х), а отмеченные вершины – и или соответственно (100) и (010).