Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бх.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
7.54 Mб
Скачать
  1. Механизм резервирования и мобилизации жиров.

Главными резервными липидами явл. триацилглицириды, депонируемые в липоцитах жировой ткани. Резервирование липидов в ировой ткани идет за счет использования жирных кислот, освобождаемх при разрушении хиломикронов, или доставляемых альбуминами плазмы крови из других тканей. Поскольку в жировой ткани очень низка активность фосфоглицираткиназы, фермента активируещего глицирин, то фактически использование глицирина для синтеза липидов становиься невозможным. Вследствие этого, избыточное употребление в пищу углеводов может ускорить синтез жиров в жировой ткани. Следовательно одной из ричин избыточного отложения жира в жировых депо является не ирная пища, а углеводы.

Резервированию жиров в жировых депо способствует гормон поджелудочной железы инсулин. При снижении уроня глюкозы в крови резервирование прекращается и включается процесс мобилизации. Мобилизация наблюдается при длительных физичеких нагрузках, адаптации к холоду, стресс. Мобилизация запускается активацией адреналином гормон чувствительной триацилглицеринлипазы.тот фермент находится в клетках жировой ткани в неактивном виде и активируется через аденилатциклазный каскадный механизм. Пусковым фактором явл.выброс адреналина , который связывается с адренорецепторами активирует аденилатциклазу, фермент синтезиующий 3'5'АМФ изАТФ.

Билет14

  1. Важнейшие этапы истории биохимии. Разделы биохимии.

Биологическая химия (биохимия) - наука, предметом изучения которой являются химический (молекулярный) состав живых организмов и химические (биохимические) реакции, которые происходят в этих организмах и лежащих в основе их жизнедеятельности, то есть выполнение разнообразных физиологических функций. Раздел, изучающий химический состав живых организмов и свойства химических соединений, выделенных из живых тканей, называетсястатической биохимией.

Все многообразие химических реакций в организме, их взаимосвязь и регуляция, а также сопряженные с ними превращения энергии в процессах жизнедеятельности изучаются динамической биохимией.

Биохимические процессы, лежащие в основе жизнедеятельности отдельных тканей и органов и проявления их специфической функции, рассматриваются различными разделами функциональной биохимии.

  1. Строение и функции генетического кода: код, кадон и антикадон.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами АГЦ и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U(У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Антикодон - участок молекулы транспортной РНК, состоящий из трех нуклеотидов, комплементарно связывающийся с кодоном информационной РНК, что обеспечивает правильную расстановку каждой аминокислоты при биосинтезе белка.

Кодон - дискретная единица генетического кода, состоящая из трех последовательных нуклеотидов, в молекуле ДНК или РНК.

Из 64 кодонов 61 кодирует определенные аминокислоты, а 3 стоп-кодона определяют окончание синтеза полипептидной цепи.

Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном

Свойства генетического кода

1.Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

  1. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

  2. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся геноввирусовмитохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

  3. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты —цистеин и селеноцистеин)[1]

  4. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

  5. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

  6. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными