
- •1. Свойства электрических зарядов
- •2. Электрическое поле. Напряженность электрического поля
- •3. Принцип суперпозиции электрических полей
- •4. А существует ли электрическое поле?
- •5. Силовые линии электрического поля
- •6. Поток вектора напряженности электрического поля Теорема Гаусса
- •7. Работа электрических сил при переносе заряда
- •8. Разность потенциалов. Потенциал электрического поля
- •9. Связь между напряженностью электрического поля
- •10. Потенциалы некоторых систем зарядов
- •11. Энергия системы зарядов
- •12. Проводники в электрическом поле
- •13. Электрическая емкость
- •14. Энергия заряженного конденсатора
- •15. Энергия электрического поля
- •16. Электрический диполь
- •17. Диэлектрики
- •18. Пьезоэлектрический эффект.
- •19. Сегнетоэлектрики
- •2.Электрический ток
- •3.Магнитное взаимодействие токов
- •1.Индукция магнитного поля
- •2.Закон Био-Савара_Лапласа
- •3.Закон Ампера.
- •4. Магнитное поле движущегося заряда.
- •5. Сила Лоренца
- •6. Ускорители заряженных частиц
- •7. Контур с током в магнитном поле.
- •9.Магнитный поток.
- •10.Магнитное поле в веществе.
- •11. Магнетики.
- •1. Явление электромагнитной индукции
- •2. Энергия магнитного поля.
- •5. Электронная теория электропроводности
- •1.Природа носителей заряда в металлах.
- •2. Сверхпроводимость.
- •3. Электрический ток в газах.
- •4.Электрический ток в электролитах.
- •5.Термоэлектрические явления.
- •6.Термоэлектронная эмиссия.
- •8. Эффект Холла.
- •9. Полупроводниковые приборы.
- •1.Электромагнитные колебания.
- •2. Переменный электрический ток.
- •7. Электромагнитное поле
- •2. Электромагнитные волны.
- •8. Персоналии
7. Работа электрических сил при переносе заряда
в электрическом поле
П
r
F
усть
заряд q
(рис. 6) создает электростатическое поле,
а пробный заряд q’
надо переместить из точки 1 в точку 2.
Работа по перемещению заряда из точки
1 в точку 2 определяется выражением:
2
1
dr
(8)
q
Рис. 6
Скалярное
произведение векторов
и
можно представить в виде:
(9)
Подставив (9) в (8) и произведя интегрирование, получим
Итак, работа по перемещению q' из 1 в 2 имеет вид:
(10)
Из (10) следует два очень важных вывода: во – первых, работа сил электростатического поля по перенесению заряда не зависит от формы траектории, а только от положения начальной и конечной точек; во – вторых, работа электростатических сил по замкнутому контуру равна 0.
Поля, работа которых по замкнутому пути равна нулю, или, что тоже самое, не зависит от формы перемещения между двумя точками поля, называются потенциальными. Электростатическое поле – тоже потенциальное поле. Другим примером потенциального поля является гравитационное поле.
Не следует думать, что любые поля являются потенциальными. Так поле трения – вовсе не потенциальное поле. Двигая тело в поле сил трения по замкнутой траектории, мы на каждом отрезке этой траектории совершаем отрицательную работу. Поэтому суммарная работа при таком переносе тела оказывается отрицательной. Придадим выражению (10) иное математическое выражение.
Поскольку
работу сил электростатического поля
на участке траектории dl
можно записать, как
,
где
– проекция сил электростатического
поля на направление перемещения
заряда, то с учетом равенства нулю работы
по замкнутому контуру
(11) Кружок поставленный
на знак интеграла относится к пределам
интегрирования и означает, что здесь
речь идет о суммировании по замкнутой
траектории. Математики договорились
такой интеграл взятый по замкнутой
кривой называть циркуляцией вектора,
стоящего под знаком интеграла.
Воспользовавшись определением
напряженности электрического поля (2),
соотношение (11) можно переписать
и окончательно, разделив на q
левую и правую части равенства получим
(12) Это утверждение означает, что
циркуляция вектора Е
по замкнутому контуру равна нулю и
выражает то обстоятельство, что
электростатическое поле является
потенциальным полем. Равенство (12)
является интегральной формой утверждения
о потенциальности электрического
поля.
8. Разность потенциалов. Потенциал электрического поля
Выделим в электрическом поле две точки 1 и 2 и перенесем некоторый заряд q из точки 1 в точку 2 (рис. 6). Работу сил электрического поля по такому переносу обозначим А12.
Если мы будем переносить между этими точками другой заряд, то величина работы будет, естественно, другой. Но вот, что интересно. Хотя величина совершенной работы зависит от величины перенесенного заряда, но отношение этой работы к величине перенесенного заряда уже не зависит от величины переносимого заряда. Следовательно, это отношение является некой новой характеристикой электрического поля.
Мало
этого, поскольку работа А12
не зависит от траектории переноса
(10), то выше названное отношение будет
характеризовать не все электрическое
поле, а только его две точки 1 и 2, да к
тому же оно будет однозначной
характеристикой этих точек. Такую
характеристику принято называть
разностью потенциалов между точками
1 и 2 и обозначать как
или
.
Итак, обобщая уже сказанное, можно утверждать, что разностью потенциалов между точками 1 и 2 электрического поля называют отношение работы, которую совершают силы электрического поля по переносу заряда из точки 1 в точку 2 к величине перенесенного заряда
(13)
В качестве второй точки, в которую из данной точки переносится заряд, можно избрать какую-либо заранее выбранную точку. Ее можно выбрать либо в бесконечности, либо на поверхности Земли, либо в каком-нибудь другом месте. Можно подсчитать работу по переносу заряда из данной точки в эту заранее выбранную точку и, разделив эту работу на величину перенесенного заряда, мы получим величину, называемую потенциалом данной точки поля , относительно этой заранее выбранной точки. Так можно ввести понятие потенциала относительно бесконечности, потенциала, относительно Земли и т.п. В каждой конкретной задаче точку, относительно которой отсчитывается потенциал, можно выбирать заново исходя из условий задачи. Следует еще раз подчеркнуть, что, хотя мы и пользуемся в этих случаях понятием потенциал, но физический смысл этого понятия по-прежнему связан с разностью потенциалов. Под потенциалом точки поля имеется в виду разность потенциалов между данной точкой поля и какой-то заранее выбранной его точкой. Разность потенциалов, потенциал – энергетическая характеристика электрического поля.
Понятие разности потенциалов широко используется физиками по двум причинам. Во-первых, это величина, в отличие от напряженности поля, величина скалярная, а со скалярными величинами работать легче, чем с векторными. И во-вторых, приборы для измерения разности потенциалов имеют более простое устройство и шире, в связи с этим распространены, чем приборы для измерения напряженности электрического поля.
Пользуясь определением понятия разности потенциалов, можно установить единицу для измерения этой величины. В системе СИ работа измеряется в джоулях, заряд в кулонах, поэтому за единицу разности потенциалов принимают разность потенциалов между двумя точками поля в том случае, если для переноса заряда в 1 кулон между этими точками силами поля совершена работа в 1 джоуль. Эту единицу называют вольт (В).
1 В = 1 Дж/1 Кл
Мы уже сказали, что из-за того, что потенциал величина скалярная, многие математические преобразования с этой величиной проще осуществлять, чем с напряженностью поля. Убедимся в этом на примере поиска потенциалов системы зарядов.
Пусть эта система состоит из неподвижных точечных зарядов, создающих электростатическое поле. Ранее на примере этой системы мы сформулировали принцип суперпозиции электрических полей, используя напряженность поля (3). Для потенциала этой системы зарядов в произвольной точке можно записать
(14) Здесь
и т.д. – потенциалы поля, создаваемых в
этой точке каждым из зарядов при
отсутствии остальных. Разумеется, на
этот раз речь идет об алгебраической
сумме.
Убедиться в справедливости соотношения (14) можно на основании следующих рассуждений. Подсчитаем работу сил электрического поля по переносу заряда q из данной точки поля, в какую-то заранее выбранную точку. Эта работа может быть представлена как сумма работ, совершаемых силами полей, создаваемых каждым из зарядов источников в отдельности
(15) Разделив равенство (15) почленно
на величину переносимого заряда q
получим утверждение (14).