Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электричество и магнетизм.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
2.98 Mб
Скачать

2. Сверхпроводимость.

В 1911 г. голландский физик Х.Каммерлинг-Оннес обнаружил, что при температуре ТС=4,1К ртуть переходит в новое состояние, в котором у нее отсутствует электрическое сопротивление (рис. ).

Каммерлинг-Оннес описывал свои результаты так: «При 4,3К сопротивление ртути уменьшается до 0,084 Ом, что со­ставляет 0,0021 от значения сопротивления, которое имела бы твердая ртуть при 0°С. Обнаружено, что при ЗК сопротивление падает ниже 3*10-6 Ом, что составляет одну десятимиллионную от значения, которое было бы при 0°С». Улучшая разрешение измерительной системы, Каммерлинг-Оннес не смог заметить отличия сопротивления ртути при этих температурах от нуле­вого значения. Он назвал обращение в нуль сопротивления некоторых металлов сверхпроводимостью. Температуру Тс, ниже которой наблюдается переход в сверхпроводящее состояние, принято называть критической. Позднее было обнаружено, что сопротивление ртути восстанавливается при Т<Тс в сильном магнитном поле.

В 1933 г. В.Майснер и Р.Оксенфельд при Т< Тк обнаружи­ли, что магнитное поле выталкивается из сверхпроводника, внутри объема магнитная индукция оказывалась равной нулю (эффект Майснера). Эффект Майснера вызван тем, что в сверх­проводнике, помещенном в слабое магнитное поле, в тонком поверхностном слое наводятся круговые незатухающие токи (токи Майснера). Магнитное поле этих токов компенсирует внутри сверхпроводника внешнее магнитное поле. Долгое вре­мя состояние сверхпроводимости физики объяснить не могли. Лишь в 1957 г. Дж.Бардину, Л.Куперу и Дж.Шифферу удалось построить микроскопичес-кую теорию сверхпроводимости. По­ведение электронов, имеющих полуцелый спин, описывается в металле статистикой Ферми, по которой на каждом разрешен­ном энергетическом уровне системы могут находиться только два электрона с противоположными спинами (принцип запрета Паули). В металлах разрешенные энергетические уровни обра­зуют полосы («зоны») шириной 10-4÷10-5 К, в пределах кото­рых уровни отстоят друг от друга на 10-17 К. В такой ситуации сверхпроводимость не может возникнуть, поскольку электроны будут иметь возможность за счет перехода на ближайшие уров­ни рассеяться на примесях, дислокациях, фотонах, что и приве­дет к возникновению сопротивления.

По-другому ведут себя квантовые частицы с целым спином – бозоны. Для них принцип запрета Паули не работает и при низкой температуре. Все бозе-частицы системы могут сконден­сироваться на наинизшем уровне. Если энергетический спектр возбуждений такой системы удовлетворяет определенному ус­ловию, то движение бозе-частиц при слабых возбуждениях (низкие температуры, слабые электрические и магнитные поля и т.д.) оказывается бездиссипативным (происходит без сопро­тивления).

Объединение электронов в пары, имеющие уже целый спин, могло бы привести к возникновению сверхпроводимости. Объединиться в пару электронов возможно лишь при взаимо­действии этих электронов с положительными ионами решетки. Если один из электронов, притягивая положительные ионы ре­шетки, деформирует ее, то второй электрон, притянувшийся к той же области деформации, как бы спаривается с первым. В результате между двумя электронами возникает притяжение посредством так называемого обмена фотонами – квазичастицами, описывающими колебания кристаллической решетки. Теория образования электронных пар посредством электрон-фотонного взаимодействия и была построена Бардиным, Купе­ром, Шиффером (теория БКШ). По теории БКШ, электроны, образующие так называемую куперовскую пару, имеют проти­воположные спины, импульсы электронов, составляющих пару, противоположны.

Правильность основных положений теории БКШ была под­тверждена в 1961 г. квантованием магнитного потока в экспе­риментах Дивера-Феербенка и Долла-Небаура. Образцы из сверхпроводников в форме тонкостенных полых цилиндров охлаждались ниже Тс в однородном магнитном поле, направ­ленном вдоль оси цилиндра. После выключения поля измерялся магнитный поток, захваченный сверхпроводящим цилиндром. Оказалось, что захваченный поток квантуется, причем квант потока обратно пропорционален заряду 2е, т.е. действительно сверхпроводящее состояние связано с электронными куперовскими парами.

Сверхпроводниками оказались многие металлы и их спла­вы. Наибольшее Тс оказалось у соединений ниобия Nb3Sn – 18 K, Nb3Gе – 23К).

Появились работы, показывающие, что электрон-фотонное взаимодействие невозможно при температурах выше 30К, что не позволяет создать сверхпроводники с высокими критиче­скими температурами. Ситуация изменилась в 1986 г. 17 апреля в редакцию журнала «Zeitschrift fur Physik» поступило сообще­ние из Швейцарии от сотрудников лаборатории фирмы ИБМ Бернорца и Мюллера «Возможная сверхпроводимость в Ва – Lа – Сu – О системе». Вскоре появилось сообщение американских ученых из лаборатории фирмы Белл об обнаружении сверхпро­водимости с Тc=36К в соединении La1,8Sr0 2CuO4. Стало ясно, что открыто новое направление – физика оксидных сверхтем­пературных сверхпроводников. Было показано, что среди ме­таллических оксидных соединений можно найти сверхпровод­ники с высокой критической температурой. Через полгода была синтезирована система АВа2СuзО7, где А – любой из лантанои­дов с Тс, лежащей в пределах (90÷95)К. Открытия посыпались как из рога изобилия, оксиды-купраты оказались действительно радикально отличными от обычных сверхпроводников. В их соединениях с ртутью критическую температуру удалось повы­сить до 135 – 160 К. Проведенные исследования показали, что в высокотемпературных сверхпроводниках проводимость также осуществляется спаренными электронами. Теоретики сумели показать, что в определенных ситуациях электрон-фотонное взаимодействие может иметь место до 100К, однако возможной причиной объединения электронов в высокотемпературных сверхпроводниках в пары может наряду с электрон-фотонным быть электрон-электронное или спиновое взаимодействие.

Хотя открытие высокотемпературной сверхпроводимости привело к резкому увеличению критической температуры, но Тс все еще остается слишком низкой, чтобы на практике ис­пользовать сверхпроводящие линии электропередач, не имею­щие тепловых потерь. Тем не менее, практические применения сверхпроводников, начатые еще для обычных, с открытием вы­сокотемпературных расширяются. Так, сверхпроводники ши­роко используются для создания сильных магнитных полей. Магнитные поля, созданные электромагнитами с обмотками из высокотемпературных сверхпроводников, позволили вплотную подойти к осуществлению управляемой реакции термоядерного синтеза. Высокотемпературные сверхпроводники используются для создания новых быстродействующих элементов вычисли­тельной техники, приборов, регистрирующих электромагнит­ное излучение и др.