Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение лекции_ОПД.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
16.05 Mб
Скачать

Влияние легирующих элементов на превращения при отпуске

Легирующие элементы замедляют процесс распада мартенсита: никель, марганец – незначительно; хром, молибден, кремний – заметно. Это связано с тем, что процессы при отпуске имеют диффузионный характер, а большинство элементов замедляют карбидное превращение. Легированные стали сохраняют структуру мартенсита отпуска до температуры 400...500°С. Так как в легированных сталях сохраняется значительное количество остаточного аустенита, то превращение его в мартенсит отпуска способствует сохранению твердости до высоких температур.

Таким образом, легированные стали при отпуске нагревают до более высоких температур или увеличивают выдержку.

Классификация легированных сталей

Стали классифицируются по нескольким признакам.

1. По структуре после охлаждения на воздухе выделяются три основных класса сталей:

  • перлитный;

  • мартенситный;

    а

    б

    в

    Рисунок 17.2 – Диаграммы изотермического распада аустенита для сталей перлитного (а), мартенситного (б) и аустенитного (в) классов

  • аустенитный

Стали перлитного класса характеризуются малым содержанием легирующих элементов; мартенситного – более значительным содержанием; аустенитного –высоким содержанием легирующих элементов.

Классификация связана с кинетикой распада аустенита. Диаграммы изотермического распада аустенита для сталей различных классов представлены на рисунке По мере увеличения содержания легирующих элементов устойчивость аустенита в перлитной области возрастает, а температурная область мартенситного превращения снижается.

Для сталей перлитного класса кривая скорости охлаждения на воздухе пересекает область перлитного распада (рисунок 17.2а), поэтому образуются структуры перлита, сорбита или троостита.

Для сталей мартенситного класса область перлитного распада сдвинута вправо (рисунок 17.2б). Охлаждение на воздухе не приводит к превращению в перлитной области. Аустенит переохлаждается до температуры мартенситного превращения и происходит образование мартенсита.

Для сталей аустенитного класса увеличение содержания углерода и легирующих элементов сдвигает вправо область перлитного распада, а также снижает мартенситную точку, переводя ее в область отрицательных температур (рисунок 17.2в). Сталь охлаждается на воздухе до комнатной температуры, сохраняя аустенитное состояние.

2. По степени легирования (по содержанию легирующих элементов):

  • низколегированные – 2,5.. .5 %;

  • среднелегированные – до 10 %;

  • высоколегированные – более 10%.

3. По числу легирующих элементов:

  • трехкомпонентные (железо, углерод, легирующий элемент);

  • четырехкомпонентные (железо, углерод, два легирующих элемента) и так далее.

4. По составу: никелевые, хромистые, хромоникелевые, хромоникельмолибденовые и так далее (признак– наличие тех или иных легирующих элементов).

5. По назначению:

  • конструкционные;

  • инструментальные (режущие, мерительные, штамповые);

  • стали и сплавы с особыми свойствами (резко выраженные свойства: нержавеющие, жаропрочные и термоустойчивые, износоустойчивые, с особыми магнитными и электрическими свойствами).

Лекция 18

Конструкционные стали. Классификация конструкционных сталей.

  1. Классификация конструкционных сталей.

  2. Углеродистые стали.

  3. Цементуемые стали.

  4. Улучшаемые стали.

  5. Высокопрочные стали.

  6. Пружинные стали.

  7. Шарикоподшипниковые стали.

  8. Стали для изделий, работающих при низких температурах

  9. Износостойкие стали.

  10. Автоматные стали.

Классификация конструкционных сталей

Машиностроительные стали предназначены для изготовления различных деталей машин и механизмов.

Они классифицируются:

  • по химическому составу ( углеродистые и легированные);

  • по обработке (цементуемые, улучшаемые);

  • по назначению (пружинные, шарикоподшипниковые).

Углеродистые стали

Низкоуглеродистые стали 05кп, 08, 10, 10пс обладают малой прочностью высокой пластичностью. Применяются без термической обработки для изготовления малонагруженных деталей – шайб, прокладок и т.п.

Среднеуглеродистые стали 35, 40, 45 применяются после нормализации, термического улучшения, поверхностной закалки.

В нормализованном состоянии по сравнению с низкоотпущенным обладают большей прочностью, но меньшей пластичностью. После термического улучшения наблюдается наилучшее сочетание механических свойств. После поверхностной закалки обладают высокой поверхностной твердостью и сопротивлением износу.

Высокоуглеродистые стали 60, 65, 70, 75 используются как рессорно-пружинные после среднего отпуска. В нормализованном состоянии – для прокатных валков, шпинделей станков.

Достоинства углеродистых качественных сталей – дешевизна и технологичность. Но из-за малой прокаливаемости эти стали не обеспечивают требуемый комплекс механических свойств в деталях сечением более 20 мм.