
- •Введение
- •Цель и задачи дисциплины, ее место в учебном процессе
- •Лекция 2 Материаловедение. Особенности атомно-кристаллического строения металлов.
- •Металлы, особенности атомно-кристаллического строения
- •Понятие об изотропии и анизотропии
- •Аллотропия или полиморфные превращения.
- •Магнитные превращения
- •Лекция 2 Строение реальных металлов. Дефекты кристаллического строения
- •Точеные дефекты
- •Линейные дефекты
- •Простейшие виды дислокаций - краевые и винтовые
- •Лекция 3 Кристаллизация металлов. Методы исследования металлов.
- •Механизм и закономерности кристаллизации металлов.
- •Условия получения мелкозернистой структуры
- •Строение металлического слитка
- •Методы исследования металлов: структурные и физические.
- •Определение химического состава
- •Изучение структуры
- •Физические методы исследования
- •Лекция 4 Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •Понятие о сплавах и методах их получения
- •Основные понятия в теории сплавов.
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •Кристаллизация сплавов
- •Диаграмма состояния
- •Лекция 5 Диаграммы состояния двухкомпонентных сплавов.
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Лекция 6 Нагрузки, напряжения и деформации. Механические свойства.
- •Физическая природа деформации металлов
- •Природа пластической деформации
- •Дислокационный механизм пластической деформации
- •Разрушение металлов
- •Механические свойства и способы определения их количественных характеристик
- •Лекция 7. Механические свойства (продолжение). Технологические и эксплуатационные свойства
- •Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность
- •Твердость по Бринеллю (гост 9012)
- •Метод Роквелла гост 9013
- •Метод Виккерса
- •Метод царапания
- •Динамический метод (по Шору)
- •Механические свойства, определяемые при динамических испытаниях
- •Способы оценки вязкости
- •Оценка вязкости по виду излома
- •Технологические свойства
- •Эксплуатационные свойства
- •Лекция 8 Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •Конструкционная прочность материалов
- •Особенности деформации поликристаллических тел
- •Влияние пластической деформации на структуру и свойства металла: наклеп
- •Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •Компоненты и фазы железоуглеродистых сплавов
- •Процессы при структурообразовании железоуглеродистых сплавов
- •Структуры железоуглеродистых сплавов
- •Лекция 10 Стали. Классификация и маркировка сталей.
- •Влияние углерода и примесей на свойства сталей
- •Влияние углерода.
- •Влияние примесей.
- •Назначение легирующих элементов
- •Распределение легирующих элементов в стали
- •Классификация и маркировка сталей Классификация сталей
- •Маркировка сталей
- •Углеродистые стали обыкновенного качества (гост 380).
- •Качественные углеродистые стали
- •Качественные и высококачественные легированные стали
- •Легированные конструкционные стали
- •Классификация чугунов
- •Диаграмма состояния железо - графит.
- •Процесс графитизации
- •Строение, свойства, классификация и маркировка серых чугунов
- •Влияние состава чугуна на процесс графитизации
- •Влияние графита на механические свойства отливок
- •Положительные стороны наличия графита
- •Серый чугун
- •Высокопрочный чугун с шаровидным графитом
- •Ковкий чугун
- •Отбеленные и другие чугуны
- •Превращения, протекающие в структуре стали при нагреве и охлаждении
- •Механизм основных превращений
- •Закономерности превращения
- •Промежуточное превращение
- •Лекция 13 Основы теории термической обработки стали (продолжение) Технологические особенности и возможности отжига и нормализации.
- •3. Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •4. Превращение мартенсита в перлит.
- •Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •Отжиг и нормализация. Назначение и режимы
- •Лекция 14 Технологические особенности и возможности закалки и отпуска
- •Закалка
- •Охлаждение при закалке.
- •Способы закалки
- •Отпускная хрупкость
- •Лекция 15 Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •Химико-термическая обработка стали
- •Назначение и технология видов химико-термической обработки: цементации, азотирования, нитроцементации и диффузионной металлизации
- •Структура цементованного слоя
- •Термическая обработка после цементации.
- •Азотирование
- •Цианирование и нитроцементация
- •Диффузионная металлизация
- •Лекция 16 Методы упрочнения металла.
- •Термомеханическая обработка стали
- •Поверхностное упрочнение стальных деталей
- •Старение
- •Обработка стали холодом
- •Упрочнение методом пластической деформации
- •Лекция 17 Конструкционные материалы. Легированные стали.
- •Конструкционные стали
- •Легированные стали
- •Влияние элементов на полиморфизм железа
- •Влияние легирующих элементов на превращения в стали. Влияние легирующих элементов на превращение перлита в аустенит
- •Влияние легирующих элементов на превращение переохлажденного аустенита
- •Влияние легирующих элементов на мартенситное превращение
- •Влияние легирующих элементов на превращения при отпуске
- •Классификация легированных сталей
- •Цементуемые стали.
- •Улучшаемые стали
- •Улучшаемые легированные стали
- •Высокопрочные стали
- •Пружинные стали
- •Шарикоподшипниковые стали
- •Стали для изделий, работающих при низких температурах
- •Износостойкие стали
- •Автоматные стали
- •Легированные инструментальные стали
- •Быстрорежущие стали
- •Стали для измерительных инструментов
- •Штамповые стали
- •Твердые сплавы
- •Алмаз как материал для изготовления инструментов
- •Классификация коррозионно-стойких сталей и сплавов
- •Хромистые стали
- •Жаростойкость, жаростойкие стали и сплавы
- •Жаропрочность, жаропрочные стали и сплавы
- •Классификация жаропрочных сталей и сплавов
- •Лекция 21 Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы . Медь и ее сплавы
- •Титан и его сплавы
- •Алюминий и его сплавы
- •Алюминиевые сплавы.
- •Деформируемые сплавы, не упрочняемые термической обработкой
- •Деформируемые сплавы, упрочняемые термической обработкой
- •Литейные алюминиевые сплавы
- •Магний и его сплавы
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Медь и ее сплавы
- •Лекция 22 Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •Композиционные материалы
- •Материалы порошковой металлургии
- •Пористые порошковые материалы
- •Прочие пористые изделия
- •Конструкционные порошковые материалы
- •Спеченные цветные металлы
- •Электротехнические порошковые материалы
- •Магнитные порошковые материалы
Отпускная хрупкость
Обычно с повышением температуры отпуска ударная вязкость увеличивается, а скорость охлаждения не влияет на свойства. Но для некоторых сталей наблюдается снижение ударной вязкости. Этот дефект называется отпускной хрупкостью (рисунок 14.2).
Отпускная хрупкость I рода наблюдается при отпуске в области температур около 300°С. Она не зависит от скорости охлаждения.
Это явление связано с неравномерностью превращения отпущенного мартенсита. Процесс протекает быстрее вблизи границ зерен по сравнению с объемами внутри зерна. У границ наблюдается концентрация напряжений, поэтому границы хрупкие.
Отпускная хрупкость I рода «необратима», то есть при повторных нагревах тех же деталей не наблюдается.
|
Рисунок 14.2 – Зависимость ударной вязкости от температуры отпуска |
При высоком отпуске по границам зерен происходит образование и выделение дисперсных включений карбидов. Приграничная зона обедняется легирующими элементами. При последующем медленном охлаждении происходит диффузия фосфора к границам зерна. Приграничные зоны обогащаются фосфором, снижаются прочность и ударная вязкость. Этому дефекту способствуют хром, марганец и фосфор. Уменьшают склонность к отпускной хрупкости II рода молибден и вольфрам, а также быстрое охлаждение после отпуска.
Отпускная хрупкость II рода «обратима», то есть при повторных нагревах и медленном охлаждении тех же сталей в опасном интервале температур дефект может повториться.
Стали, склонные к отпускной хрупкости II рода, нельзя использовать для работы с нагревом до 650°С без последующего быстрого охлаждения.
Лекция 15 Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
Химико-термическая обработка стали.
Назначение и технология видов химико-термической обработки: цементации, азотирования, нитроцементации и диффузионной металлизации.
Цементация.
Цементация в твердом карбюризаторе.
Газовая цементация.
Структура цементованного слоя.
Термическая обработка после цементации.
Азотирование.
Цианирование и нитроцементация.
Диффузионная металлизация.
Химико-термическая обработка стали
Химико-термическая обработка (ХТО) – процесс изменения химического состава, микроструктуры и свойств поверхностного слоя детали.
Изменение химического состава поверхностных слоев достигается в результате их взаимодействия с окружающей средой (твердой, жидкой, газообразной, плазменной), в которой осуществляется нагрев.
В результате изменения химического состава поверхностного слоя изменяются его фазовый состав и микроструктура,
Основными параметрами химико-термической обработки являются температура нагрева и продолжительность выдержки.
В основе любой разновидности химико-термической обработки лежат процессы диссоциации, адсорбции, диффузии.
Диссоциация – получение насыщающего элемента в активированном атомарном состоянии в результате химических реакций, а также испарения. Например, 2NH3→2N+ЗН2 или СН4 →С+2Н2.
Адсорбция – захват поверхностью детали атомов насыщающего элемента.
Адсорбция – всегда экзотермический процесс, приводящий к уменьшению свободной энергии.
Диффузия – перемещение адсорбированных атомов вглубь изделия.
Для осуществления процессов адсорбции и диффузии необходимо, чтобы насыщающий элемент взаимодействовал с основным металлом, образуя твердые растворы или химические соединения.
Химико-термическая обработка является основным способом поверхностного упрочнения деталей.
Основными разновидностями химико-термической обработки являются:
цементация (насыщение поверхностного слоя углеродом);
азотирование (насыщение поверхностного слоя азотом);
нитроцементация или цианирование (насыщение поверхностного слоя одновременно углеродом и азотом);
диффузионная металлизация (насыщение поверхностного слоя различными металлами).