
- •Введение
- •Цель и задачи дисциплины, ее место в учебном процессе
- •Лекция 2 Материаловедение. Особенности атомно-кристаллического строения металлов.
- •Металлы, особенности атомно-кристаллического строения
- •Понятие об изотропии и анизотропии
- •Аллотропия или полиморфные превращения.
- •Магнитные превращения
- •Лекция 2 Строение реальных металлов. Дефекты кристаллического строения
- •Точеные дефекты
- •Линейные дефекты
- •Простейшие виды дислокаций - краевые и винтовые
- •Лекция 3 Кристаллизация металлов. Методы исследования металлов.
- •Механизм и закономерности кристаллизации металлов.
- •Условия получения мелкозернистой структуры
- •Строение металлического слитка
- •Методы исследования металлов: структурные и физические.
- •Определение химического состава
- •Изучение структуры
- •Физические методы исследования
- •Лекция 4 Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •Понятие о сплавах и методах их получения
- •Основные понятия в теории сплавов.
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •Кристаллизация сплавов
- •Диаграмма состояния
- •Лекция 5 Диаграммы состояния двухкомпонентных сплавов.
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Лекция 6 Нагрузки, напряжения и деформации. Механические свойства.
- •Физическая природа деформации металлов
- •Природа пластической деформации
- •Дислокационный механизм пластической деформации
- •Разрушение металлов
- •Механические свойства и способы определения их количественных характеристик
- •Лекция 7. Механические свойства (продолжение). Технологические и эксплуатационные свойства
- •Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность
- •Твердость по Бринеллю (гост 9012)
- •Метод Роквелла гост 9013
- •Метод Виккерса
- •Метод царапания
- •Динамический метод (по Шору)
- •Механические свойства, определяемые при динамических испытаниях
- •Способы оценки вязкости
- •Оценка вязкости по виду излома
- •Технологические свойства
- •Эксплуатационные свойства
- •Лекция 8 Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •Конструкционная прочность материалов
- •Особенности деформации поликристаллических тел
- •Влияние пластической деформации на структуру и свойства металла: наклеп
- •Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •Компоненты и фазы железоуглеродистых сплавов
- •Процессы при структурообразовании железоуглеродистых сплавов
- •Структуры железоуглеродистых сплавов
- •Лекция 10 Стали. Классификация и маркировка сталей.
- •Влияние углерода и примесей на свойства сталей
- •Влияние углерода.
- •Влияние примесей.
- •Назначение легирующих элементов
- •Распределение легирующих элементов в стали
- •Классификация и маркировка сталей Классификация сталей
- •Маркировка сталей
- •Углеродистые стали обыкновенного качества (гост 380).
- •Качественные углеродистые стали
- •Качественные и высококачественные легированные стали
- •Легированные конструкционные стали
- •Классификация чугунов
- •Диаграмма состояния железо - графит.
- •Процесс графитизации
- •Строение, свойства, классификация и маркировка серых чугунов
- •Влияние состава чугуна на процесс графитизации
- •Влияние графита на механические свойства отливок
- •Положительные стороны наличия графита
- •Серый чугун
- •Высокопрочный чугун с шаровидным графитом
- •Ковкий чугун
- •Отбеленные и другие чугуны
- •Превращения, протекающие в структуре стали при нагреве и охлаждении
- •Механизм основных превращений
- •Закономерности превращения
- •Промежуточное превращение
- •Лекция 13 Основы теории термической обработки стали (продолжение) Технологические особенности и возможности отжига и нормализации.
- •3. Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •4. Превращение мартенсита в перлит.
- •Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •Отжиг и нормализация. Назначение и режимы
- •Лекция 14 Технологические особенности и возможности закалки и отпуска
- •Закалка
- •Охлаждение при закалке.
- •Способы закалки
- •Отпускная хрупкость
- •Лекция 15 Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •Химико-термическая обработка стали
- •Назначение и технология видов химико-термической обработки: цементации, азотирования, нитроцементации и диффузионной металлизации
- •Структура цементованного слоя
- •Термическая обработка после цементации.
- •Азотирование
- •Цианирование и нитроцементация
- •Диффузионная металлизация
- •Лекция 16 Методы упрочнения металла.
- •Термомеханическая обработка стали
- •Поверхностное упрочнение стальных деталей
- •Старение
- •Обработка стали холодом
- •Упрочнение методом пластической деформации
- •Лекция 17 Конструкционные материалы. Легированные стали.
- •Конструкционные стали
- •Легированные стали
- •Влияние элементов на полиморфизм железа
- •Влияние легирующих элементов на превращения в стали. Влияние легирующих элементов на превращение перлита в аустенит
- •Влияние легирующих элементов на превращение переохлажденного аустенита
- •Влияние легирующих элементов на мартенситное превращение
- •Влияние легирующих элементов на превращения при отпуске
- •Классификация легированных сталей
- •Цементуемые стали.
- •Улучшаемые стали
- •Улучшаемые легированные стали
- •Высокопрочные стали
- •Пружинные стали
- •Шарикоподшипниковые стали
- •Стали для изделий, работающих при низких температурах
- •Износостойкие стали
- •Автоматные стали
- •Легированные инструментальные стали
- •Быстрорежущие стали
- •Стали для измерительных инструментов
- •Штамповые стали
- •Твердые сплавы
- •Алмаз как материал для изготовления инструментов
- •Классификация коррозионно-стойких сталей и сплавов
- •Хромистые стали
- •Жаростойкость, жаростойкие стали и сплавы
- •Жаропрочность, жаропрочные стали и сплавы
- •Классификация жаропрочных сталей и сплавов
- •Лекция 21 Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы . Медь и ее сплавы
- •Титан и его сплавы
- •Алюминий и его сплавы
- •Алюминиевые сплавы.
- •Деформируемые сплавы, не упрочняемые термической обработкой
- •Деформируемые сплавы, упрочняемые термической обработкой
- •Литейные алюминиевые сплавы
- •Магний и его сплавы
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Медь и ее сплавы
- •Лекция 22 Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •Композиционные материалы
- •Материалы порошковой металлургии
- •Пористые порошковые материалы
- •Прочие пористые изделия
- •Конструкционные порошковые материалы
- •Спеченные цветные металлы
- •Электротехнические порошковые материалы
- •Магнитные порошковые материалы
Отжиг и нормализация. Назначение и режимы
Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:
улучшить обрабатываемость заготовок давлением и резанием;
исправить структуру сварных швов, перегретой при обработке давлением и литье стали;
подготовить структуру к последующей термической обработке.
Характерно медленное охлаждение со скоростью 30...100°С/ч.
Отжиг первого рода.
1. Диффузионный (гомогенизирующий) отжиг. Применяется для устранения ликвации, выравнивания химического состава сплава.
В его основе – диффузия. В результате нагрева выравнивается состав, растворяются избыточные карбиды. Применяется, в основном, для легированных сталей.
Температура нагрева зависит от температуры плавления, Тн = 0,8 Тпл.
Продолжительность выдержки: τ =8...20 часов.
2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации.
Температура нагрева связана с температурой плавления: Тн= 0,4 Тпл. Продолжительность зависит от габаритов изделия.
3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров).
Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: Тн = 160…700°С.
Продолжительность зависит от габаритов изделия.
Детали прецизионных станков (ходовые винты, высоконагруженные зубчатые колеса, червяки) отжигают после основной механической обработки при температуре 570...600°С в течение 2...3 часов, а после окончательной механической обработки, для снятия шлифовочных напряжений при температуре 160...180°С в течение 2...2,5часов.
Отжиг второго рода предназначен для изменения фазового состава.
Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные диффузионные фазовые превращения.
Является подготовительной операцией, которой подвергают отливки, поковки, прокат. Отжиг снижает твердость и прочность, улучшает обрабатываемость резанием средне- и высокоуглеродистых сталей. Измельчая зерно, снижая внутренние напряжения, уменьшая структурную неоднородность, способствует повышению пластичности и вязкости.
В зависимости от температуры нагрева различают отжиг:
1. Полный, с температурой нагрева на 30. ..50оС выше критической температуры А3, Тн = А3+ (30…50)оС.
Проводится для доэвтектоидных сталей для исправления структуры. При такой температуре нагрева аустенит получается мелкозернистый, и после охлаждения сталь имеет также мелкозернистую структуру.
2. Неполный, с температурой нагрева на 30...50°С выше критической температуры A1, Тн = А1+ (30…50)оС.
Применяется для заэвтектоидных сталей. При таком нагреве в структуре сохраняется цементит вторичный, в результате отжига цементит приобретает сферическую форму (сфероидизация). Получению зернистого цементита способствует предшествующая отжигу горячая пластическая деформация, при которой дробится цементитная сетка. Структура с зернистым цементитом лучше обрабатываются и имеют лучшую структуру после закалки. Неполный отжиг является обязательным для инструментальных сталей.
Иногда неполный отжиг применяют для доэвтектоидных сталей, если не требуется исправление структуры (сталь мелкозернистая), а необходимо только понизить твердость для улучшения обрабатываемости резанием.
3. Циклический или маятниковый отжиг применяют, если после проведения неполного отжига цементит остается пластинчатым. В этом случае после нагрева выше температуры А3 следует охлаждение до 680°С, затем снова нагрев до температуры 750... 760°С и охлаждение. В результате получают зернистый цементит.
4. Изотермический отжиг – после нагрева до требуемой температуры, изделие быстро охлаждают до температуры на 50... 100°С ниже критической температуры A1 и выдерживают до полного превращения аустенита в перлит, затем охлаждают на спокойном воздухе. Температура изотермической выдержки близка к температуре минимальной устойчивости аустенита.
В результате получают более однородную структуру, так как превращение происходит при одинаковой степени переохлаждения. Значительно сокращается длительность процесса. Применяют для легированных сталей.
5. Нормализация. – разновидность отжига.
Термическая обработка, при которой изделие нагревают до аустенитного состояния, на 30...50оС выше А3 или Асm с последующим охлаждением на воздухе.
В результате нормализации получают более тонкое строение эвтектоида (тонкий перлит или сорбит), уменьшаются внутренние напряжения, устраняются пороки, полученные в процессе предшествующей обработки. Твердость и прочность несколько выше чем после отжига.
В заэвтектоидных сталях нормализация устраняет грубую сетку вторичного цементита.
Нормализацию чаще применяют как промежуточную операцию, улучшающую структуру. Иногда проводят как окончательную обработку, например, при изготовлении сортового проката.
Для низкоуглеродистых сталей нормализацию применяют вместо отжига.
Для среднеуглеродистых сталей нормализацию или нормализацию с высоким
отпуском применяют вместо закалки с высоким отпуском. В этом случае механические свойства несколько ниже, но изделие подвергается меньшей деформации, исключаются трещины.