
- •Введение
- •Цель и задачи дисциплины, ее место в учебном процессе
- •Лекция 2 Материаловедение. Особенности атомно-кристаллического строения металлов.
- •Металлы, особенности атомно-кристаллического строения
- •Понятие об изотропии и анизотропии
- •Аллотропия или полиморфные превращения.
- •Магнитные превращения
- •Лекция 2 Строение реальных металлов. Дефекты кристаллического строения
- •Точеные дефекты
- •Линейные дефекты
- •Простейшие виды дислокаций - краевые и винтовые
- •Лекция 3 Кристаллизация металлов. Методы исследования металлов.
- •Механизм и закономерности кристаллизации металлов.
- •Условия получения мелкозернистой структуры
- •Строение металлического слитка
- •Методы исследования металлов: структурные и физические.
- •Определение химического состава
- •Изучение структуры
- •Физические методы исследования
- •Лекция 4 Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •Понятие о сплавах и методах их получения
- •Основные понятия в теории сплавов.
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •Кристаллизация сплавов
- •Диаграмма состояния
- •Лекция 5 Диаграммы состояния двухкомпонентных сплавов.
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Лекция 6 Нагрузки, напряжения и деформации. Механические свойства.
- •Физическая природа деформации металлов
- •Природа пластической деформации
- •Дислокационный механизм пластической деформации
- •Разрушение металлов
- •Механические свойства и способы определения их количественных характеристик
- •Лекция 7. Механические свойства (продолжение). Технологические и эксплуатационные свойства
- •Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность
- •Твердость по Бринеллю (гост 9012)
- •Метод Роквелла гост 9013
- •Метод Виккерса
- •Метод царапания
- •Динамический метод (по Шору)
- •Механические свойства, определяемые при динамических испытаниях
- •Способы оценки вязкости
- •Оценка вязкости по виду излома
- •Технологические свойства
- •Эксплуатационные свойства
- •Лекция 8 Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •Конструкционная прочность материалов
- •Особенности деформации поликристаллических тел
- •Влияние пластической деформации на структуру и свойства металла: наклеп
- •Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •Компоненты и фазы железоуглеродистых сплавов
- •Процессы при структурообразовании железоуглеродистых сплавов
- •Структуры железоуглеродистых сплавов
- •Лекция 10 Стали. Классификация и маркировка сталей.
- •Влияние углерода и примесей на свойства сталей
- •Влияние углерода.
- •Влияние примесей.
- •Назначение легирующих элементов
- •Распределение легирующих элементов в стали
- •Классификация и маркировка сталей Классификация сталей
- •Маркировка сталей
- •Углеродистые стали обыкновенного качества (гост 380).
- •Качественные углеродистые стали
- •Качественные и высококачественные легированные стали
- •Легированные конструкционные стали
- •Классификация чугунов
- •Диаграмма состояния железо - графит.
- •Процесс графитизации
- •Строение, свойства, классификация и маркировка серых чугунов
- •Влияние состава чугуна на процесс графитизации
- •Влияние графита на механические свойства отливок
- •Положительные стороны наличия графита
- •Серый чугун
- •Высокопрочный чугун с шаровидным графитом
- •Ковкий чугун
- •Отбеленные и другие чугуны
- •Превращения, протекающие в структуре стали при нагреве и охлаждении
- •Механизм основных превращений
- •Закономерности превращения
- •Промежуточное превращение
- •Лекция 13 Основы теории термической обработки стали (продолжение) Технологические особенности и возможности отжига и нормализации.
- •3. Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •4. Превращение мартенсита в перлит.
- •Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •Отжиг и нормализация. Назначение и режимы
- •Лекция 14 Технологические особенности и возможности закалки и отпуска
- •Закалка
- •Охлаждение при закалке.
- •Способы закалки
- •Отпускная хрупкость
- •Лекция 15 Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •Химико-термическая обработка стали
- •Назначение и технология видов химико-термической обработки: цементации, азотирования, нитроцементации и диффузионной металлизации
- •Структура цементованного слоя
- •Термическая обработка после цементации.
- •Азотирование
- •Цианирование и нитроцементация
- •Диффузионная металлизация
- •Лекция 16 Методы упрочнения металла.
- •Термомеханическая обработка стали
- •Поверхностное упрочнение стальных деталей
- •Старение
- •Обработка стали холодом
- •Упрочнение методом пластической деформации
- •Лекция 17 Конструкционные материалы. Легированные стали.
- •Конструкционные стали
- •Легированные стали
- •Влияние элементов на полиморфизм железа
- •Влияние легирующих элементов на превращения в стали. Влияние легирующих элементов на превращение перлита в аустенит
- •Влияние легирующих элементов на превращение переохлажденного аустенита
- •Влияние легирующих элементов на мартенситное превращение
- •Влияние легирующих элементов на превращения при отпуске
- •Классификация легированных сталей
- •Цементуемые стали.
- •Улучшаемые стали
- •Улучшаемые легированные стали
- •Высокопрочные стали
- •Пружинные стали
- •Шарикоподшипниковые стали
- •Стали для изделий, работающих при низких температурах
- •Износостойкие стали
- •Автоматные стали
- •Легированные инструментальные стали
- •Быстрорежущие стали
- •Стали для измерительных инструментов
- •Штамповые стали
- •Твердые сплавы
- •Алмаз как материал для изготовления инструментов
- •Классификация коррозионно-стойких сталей и сплавов
- •Хромистые стали
- •Жаростойкость, жаростойкие стали и сплавы
- •Жаропрочность, жаропрочные стали и сплавы
- •Классификация жаропрочных сталей и сплавов
- •Лекция 21 Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы . Медь и ее сплавы
- •Титан и его сплавы
- •Алюминий и его сплавы
- •Алюминиевые сплавы.
- •Деформируемые сплавы, не упрочняемые термической обработкой
- •Деформируемые сплавы, упрочняемые термической обработкой
- •Литейные алюминиевые сплавы
- •Магний и его сплавы
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Медь и ее сплавы
- •Лекция 22 Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •Композиционные материалы
- •Материалы порошковой металлургии
- •Пористые порошковые материалы
- •Прочие пористые изделия
- •Конструкционные порошковые материалы
- •Спеченные цветные металлы
- •Электротехнические порошковые материалы
- •Магнитные порошковые материалы
Лекция 7. Механические свойства (продолжение). Технологические и эксплуатационные свойства
Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность.
Твердость по Бринеллю (ГОСТ 9012).
Метод Роквелла (ГОСТ 9013).
Метод Виккерса.
Метод царапания.
Динамический метод (по Шору).
Механические свойства, определяемые при динамических испытаниях
Способы оценки вязкости.
Оценка вязкости по виду излома.
Основные характеристики.
Технологические свойства.
Эксплуатационные свойства.
Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность
Твердость – сопротивление материала проникновению в его поверхность стандартного тела (индентора), недеформирующегося при испытании.
Широкое распространение объясняется тем, что не требуются специальные образцы.
Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).
Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.
Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рисунке 7.1.
|
||
а |
б |
в |
Рисунок 7.1 –Схемы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу |
Твердость по Бринеллю (гост 9012)
Испытание проводят на твердомере Бринелля (рисунок 7.1а).
В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.
Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – Р=30D2; литой бронзы и латуни – P=10D2; алюминия и других очень мягких металлов – P=2,5D2.
Продолжительность выдержки τ: для стали и чугуна – 10 с, для латуни и бронзы –30 с.
Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.
Твердость
определяется как отношение приложенной
нагрузки Р к сферической поверхности
отпечатка F:
.
Стандартными условиями являются D=10мм; Р=3000кгс; τ=10с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D/Р/τ, НВ 5/250/30 – 80.
Метод Роквелла гост 9013
Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рисунок 7.1б).
Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16// (d=1,588мм), для более твердых материалов – конус алмазный.
Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка Ро (10 кгс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой Ро.
В зависимости от природы материала используют три шкалы твердости (таблица 7.1).
Таблица 7.1 – Шкалы для определения твердости по Роквеллу
Шкала |
Обозначение |
Индентор |
Нагрузка, кгс |
Область применения |
||
Ро |
Р1 |
Р |
||||
А |
HRA |
Алмазный конус |
10 |
50 |
60 |
Для особо твердых материалов |
В |
HRB |
Стальной закаленный шарик |
10 |
90 |
100 |
Для относительно мягких материалов |
С |
HRC |
Алмазный конус |
10 |
140 |
150 |
Для относительно твердых материалов |