Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по Физике.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.52 Mб
Скачать

3. Внутренняя энергия и теплоемкость идеальных газов

В идеальном газе молекулы не взаимодействуют между собой, внутренняя энергия одного моля газа:

Uм = NA<ε> = i/2 NAkT = i/2 RT . Uм = i/2RT.

Если вспомнить, что по определению: Cv = δQ/dT = dU/dT, поскольку, δQ = dU+pdV, а для изохорного процесса dV = 0.

Тогда Cv = (i/2) R , а, учитывая, что Cр = Cv+R, получим:

Cр = (i+2)/2 R

Следовательно, коэффициент Пуассона γ = Cp/Cv = (i+2)/i , таким образом, γ определяется числом и характером степеней свободы молекулы.

Согласно этой ф-лы для одноатомной молекулы i = 3 и γ = 1,67; жесткой двухатомной i =5 и γ = 1,4; упругой двухатомной i = 7, а γ = 1,29. В области температур, близких к комнатной, это хорошо согласуется с опытом. Однако, в широком температурном интервале это не так. Оказывается, что вращательная и колебательная энергии молекулы квантованы. При низких Т вращательные и колебательные степени свободы не возбуждены. Молекула Н2 , например,ведет себя как одноатомная в этой области температур, i = 3. В области Т ≈ 500К вращательные степени «разморожены» <ε>>εвращ и молекула Н2 ведет себя как жесткая двухатомная с = 3+2 = 5. При Т>1000К энергии <ε> достаточно для возбуждения колебательной степени свободы, «включены» все степени свободы, i = 7.

Б-17

  1. Потенциальная энергия частицы в поле.

  2. Опыт Майкельсона и Морли.

  3. Барометрическая формула.

1. Потенциальная энергия частицы в силовом поле.

То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциальной энергии (функции состояния). Возьмем стационарное поле консервативных сил, например электростатическое поле в котором мы перемещаем частицу (заряд) из разных точек в некоторой фиксированной точке О (точка отсчета). Найдем работу сил поля. Поскольку работа сил поля не зависит от пути, то остаётся зависимость её только от положения т. (О— фиксировано) т.е. от предела интегрирования

(*).

Это значит, что данная работа будет некоторой функцией радиус-вектора точки . Функцию называют потенциальной энергией частицы в поле сил. Теперь найдем работу при перемещении частицы из т.1 в т.2. Т.к. она не зависит от формы пути: то или с учетом (*)

;

;

(**)

Правая часть представляет убыль потенциальной энергии, т.е. разность начальную и конечную значений потенциальной энергии. ( — приращение); ( — убыль). Т.о. работа сил Оля на пути 1—2 равна убыли потенциальной энергии. Так как работа сил поля определяется лишь разностью энергий в двух точек, а не их абсолютного значения, то частица в т.О можно приписать любое, наперед выбранное значение потенциальной энергии.

Однако, как только зафиксирована потенциальная энергия в одной, какой-либо точке, значения её во всех остальных точках поля определяется однозначно выражением (**). Эта формула позволяет найти вид для любого стационарного поля консервативных сил. Для этого достаточно вычислить работу совершаемую силами поля между двумя любыми точками и представить её в виде убыли некоторой функции , которая и есть потенциальной энергией. Так и было ране сделано при вычислении работы гравитационной, упругой и силы тяжести. Отсюда видно, что потенциальная энергия частицы в данных полях имеет вид

— гравитационная, кулоновская +С – постоянная.

— упругой +С

— в поле тяжести.

Отметим еще раз, что потенциальная энергия определяется с точностью до некоторой постоянной величины, что несущественно, т.к. во всех формулах входит разность её значения в двух положениях частицы, поэтому постоянная выпадает, и её опускают. Кроме этого важно заметить, что потенциальную энергию следует относить не к частице в поле а к системе взаимодействующих частиц и тела, создающего поле. При данном характере взаимодействия потенциальная энергия зависит только от положения частицы относительно этого тела.