
- •1. Цвет в компьютерной графике 13
- •2. Геометрические преобразования 20
- •3. Представление геометрической информации 37
- •4. Удаление невидимых поверхностей и линий 45
- •5. Проекции пространственных сцен 55
- •5.4. Вопросы и упражнения 67
- •10.6 Вопросы и упражнения 108
- •12.4 Вопросы и упражнения 118
- •Введение Предмет и область применения компьютерной графики
- •1. Отображение информации
- •2. Проектирование
- •3. Моделирование
- •4. Графический пользовательский интерфейс
- •Краткая история
- •Технические средства поддержки компьютерной графики
- •Вопросы и упражнения
- •1. Цвет в компьютерной графике
- •1.1. О природе света и цвета
- •1.2. Цветовой график мко
- •1.3. Цветовые модели rgb и cmy
- •1.4. Другие цветовые модели
- •1.5. Вопросы и упражнения
- •2. Геометрические преобразования
- •2.1. Системы координат и векторы на плоскости и в трёхмерном пространстве
- •2.2. Уравнения прямой и плоскости
- •2.3. Аналитическое представление кривых и поверхностей
- •2.4. Пересечение луча с плоскостью и сферой
- •2.5. Интерполяция функций одной и двух переменных
- •2.6. Матрицы
- •2.7. Геометрические преобразования (перенос, масштабирование, вращение)
- •2.8. Переход в другую систему координат
- •2.9. Задача вращения относительно произвольной оси
- •2.10. Вопросы и упражнения
- •3. Представление геометрической информации
- •3.1. Геометрические примитивы
- •Полигональные модели
- •Воксельные модели
- •Поверхности свободных форм (функциональные модели)
- •3.2. Системы координат: мировая, объектная, наблюдателя и экранная
- •3.3. Однородные координаты
- •3.4. Вопросы и упражнения
- •4. Удаление невидимых поверхностей и линий
- •4.1. Алгоритм Робертса
- •4.2. Метод z-буфера
- •4.3. Методы приоритетов (художника, плавающего горизонта)
- •4.4. Алгоритмы построчного сканирования для криволинейных поверхностей
- •4.5. Метод двоичного разбиения пространства
- •4.6. Метод трассировки лучей
- •4.7. Вопросы и упражнения
- •5. Проекции пространственных сцен
- •5.1. Основные типы проекций
- •Параллельные проекции
- •Центральные проекции
- •5.2. Математический аппарат
- •Ортогональные проекции
- •Косоугольные проекции
- •Центральные проекции
- •5.3. Специальные картографические проекции. Экзотические проекции земной сферы
- •Стереографическая проекция
- •Гномоническая проекция
- •Ортографическая проекция
- •Проекции на цилиндр
- •Проекция Меркатора
- •Проекции на многогранник
- •Необычные проекции
- •5.4. Вопросы и упражнения
- •6. Растровое преобразование графических примитивов
- •6.1. Алгоритм Брезенхема растровой дискретизации отрезка
- •6.2. Алгоритмы Брезенхема растровой дискретизации окружности и эллипса
- •6.3. Алгоритмы заполнения областей
- •6.4. Вопросы и упражнения
- •7. Закрашивание. Рендеринг полигональных моделей
- •7.1. Простая модель освещения
- •7.2. Закраска граней Плоское закрашивание
- •Закраска методом Гуро
- •Закраска методом Фонга
- •7.3. Более сложные модели освещения
- •7.4. Устранение ступенчатости (антиэлайзинг)
- •7.5. Вопросы и упражнения
- •8. Визуализация пространственных реалистических сцен
- •8.1. Трехмерный графический конвейер
- •8.2. Свето-теневой анализ
- •8.3. Глобальная модель освещения с трассировкой лучей
- •8.4. Текстуры
- •8.5. Вопросы и упражнения
- •9. Введение в вычислительную геометрию
- •9.1 Вычислительная сложность алгоритмов
- •9.2 Основные геометрические объекты
- •9.3 Вопросы и упражнения
- •10. Триангуляция Делоне и диаграмма Вороного
- •10.1 Введение
- •10.2 Разбиение Делоне
- •10.3 Разбиение Вороного
- •Многогранник Вороного
- •Теорема о разбиении Вороного
- •10.4 Дуальность разбиений Вороного и Делоне
- •10.5 Алгоритм построения тетраэдризации Делоне
- •Триангуляция Делоне
- •Ячейки Вороного
- •10.6 Вопросы и упражнения
- •11. Алгоритмы построения выпуклой оболочки и триангуляции
- •11.1. Алгоритм построения выпуклой оболочки с использованием метода сортировки
- •11.2 Алгоритм построения триангуляции
- •12. Алгоритмы геометрического поиска
- •12.1 Поиск в плоском случае
- •12.2 Поиск на множестве тетраэдров
- •12.3 Поиск на множестве произвольных несамопересекающихся многогранников е3
- •12.4 Вопросы и упражнения
- •Список литературы
1.2. Цветовой график мко
Трехмерная природа восприятия цвета позволяет отображать его в прямоугольной системе координат. Любой цвет можно изобразить в виде вектора, компонентами которого являются относительные веса красного, зеленого и синего цветов, вычисленные по формулам
.
Поскольку эти координаты в сумме всегда составляют единицу, а каждая из координат лежит в диапазоне от 0 до 1, то все представленные таким образом точки пространства будут лежать в одной плоскости, причем только в треугольнике, отсекаемом от нее положительным октантом системы координат (рис. 1.4а). Ясно, что при таком представлении все множество точек этого треугольника можно описать с помощью двух координат, так как третья выражается через них посредством соотношения
.
Таким образом, мы переходим к двумерному представлению области, т. е. к проекции области на плоскость (рис. 1.4б).
С использованием такого преобразования
в 1931 г. были выработаны международные
стандарты определения и измерения
цветов. Основой стандарта стал так
называемый двумерный цветовой график
МКО. Поскольку, как показали физические
эксперименты, сложением трех основных
цветов можно получить не все возможные
цветовые оттенки, то в качестве базисных
были выбраны другие параметры, полученные
на основе исследования стандартных
реакций глаза на свет. Эти параметры —
— являются чисто теоретическими,
поскольку построены с использованием
отрицательных значений основных
составляющих цвета. Треугольник основных
цветов был построен так, чтобы охватывать
весь спектр видимого света. Кроме того,
равное количество всех трех гипотетических
цветов в сумме дает белый цвет. Координаты
цветности строятся так же, как и в
приведенной выше формуле:
При
проекции этого треугольника на плоскость
получается цветовой график МКО. Но
координаты цветности
определяют только относительные
количества основных цветов, не задавая
яркости результирующего цвета. Яркость
можно задать координатой
,
а
определить, исходя из величин
по формулам
.
Рис. 1.4. Трехмерное цветовое пространство
Рис. 1.5. Цветовой график МКО. На контуре указаны длины волн в нанометрах.
Цветовой график МКО приведен на рис. 1.5. Область, ограниченная кривой, охватывает весь видимый спектр, а сама кривая называется линией спектральных цветностей. Числа, проставленные на рисунке, означают длину волны в соответствующей точке. Точка, соответствующая полуденному освещению при сплошной облачности, принята в качестве опорного белого цвета.
Цветовой график удобен для целого ряда задач. Например, с его помощью можно получить дополнительный цвет: для этого надо провести луч от данного цвета через опорную точку до пересечения с другой стороной кривой (цвета являются дополнительными друг к другу, если при сложении их в соответствующей пропорции получается белый цвет). Для определения доминирующей длины волны какого-либо цвета также проводится луч из опорной точки до пересечения с данным цветом и продолжается до пересечения с ближайшей точкой линии цветностей.
Координаты МКО являются точным стандартом
определения цвета. Но в различных
областях, имеющих дело с цветом, есть
свой подход к его моделированию. В
частности, может использоваться другой
набор основных цветов. Компьютерная
графика опирается на систему
,
поэтому представляет интерес переход
между этими двумя наборами цветов (иными
словами, преобразование координат
цветности).