
- •1. Цвет в компьютерной графике 13
- •2. Геометрические преобразования 20
- •3. Представление геометрической информации 37
- •4. Удаление невидимых поверхностей и линий 45
- •5. Проекции пространственных сцен 55
- •5.4. Вопросы и упражнения 67
- •10.6 Вопросы и упражнения 108
- •12.4 Вопросы и упражнения 118
- •Введение Предмет и область применения компьютерной графики
- •1. Отображение информации
- •2. Проектирование
- •3. Моделирование
- •4. Графический пользовательский интерфейс
- •Краткая история
- •Технические средства поддержки компьютерной графики
- •Вопросы и упражнения
- •1. Цвет в компьютерной графике
- •1.1. О природе света и цвета
- •1.2. Цветовой график мко
- •1.3. Цветовые модели rgb и cmy
- •1.4. Другие цветовые модели
- •1.5. Вопросы и упражнения
- •2. Геометрические преобразования
- •2.1. Системы координат и векторы на плоскости и в трёхмерном пространстве
- •2.2. Уравнения прямой и плоскости
- •2.3. Аналитическое представление кривых и поверхностей
- •2.4. Пересечение луча с плоскостью и сферой
- •2.5. Интерполяция функций одной и двух переменных
- •2.6. Матрицы
- •2.7. Геометрические преобразования (перенос, масштабирование, вращение)
- •2.8. Переход в другую систему координат
- •2.9. Задача вращения относительно произвольной оси
- •2.10. Вопросы и упражнения
- •3. Представление геометрической информации
- •3.1. Геометрические примитивы
- •Полигональные модели
- •Воксельные модели
- •Поверхности свободных форм (функциональные модели)
- •3.2. Системы координат: мировая, объектная, наблюдателя и экранная
- •3.3. Однородные координаты
- •3.4. Вопросы и упражнения
- •4. Удаление невидимых поверхностей и линий
- •4.1. Алгоритм Робертса
- •4.2. Метод z-буфера
- •4.3. Методы приоритетов (художника, плавающего горизонта)
- •4.4. Алгоритмы построчного сканирования для криволинейных поверхностей
- •4.5. Метод двоичного разбиения пространства
- •4.6. Метод трассировки лучей
- •4.7. Вопросы и упражнения
- •5. Проекции пространственных сцен
- •5.1. Основные типы проекций
- •Параллельные проекции
- •Центральные проекции
- •5.2. Математический аппарат
- •Ортогональные проекции
- •Косоугольные проекции
- •Центральные проекции
- •5.3. Специальные картографические проекции. Экзотические проекции земной сферы
- •Стереографическая проекция
- •Гномоническая проекция
- •Ортографическая проекция
- •Проекции на цилиндр
- •Проекция Меркатора
- •Проекции на многогранник
- •Необычные проекции
- •5.4. Вопросы и упражнения
- •6. Растровое преобразование графических примитивов
- •6.1. Алгоритм Брезенхема растровой дискретизации отрезка
- •6.2. Алгоритмы Брезенхема растровой дискретизации окружности и эллипса
- •6.3. Алгоритмы заполнения областей
- •6.4. Вопросы и упражнения
- •7. Закрашивание. Рендеринг полигональных моделей
- •7.1. Простая модель освещения
- •7.2. Закраска граней Плоское закрашивание
- •Закраска методом Гуро
- •Закраска методом Фонга
- •7.3. Более сложные модели освещения
- •7.4. Устранение ступенчатости (антиэлайзинг)
- •7.5. Вопросы и упражнения
- •8. Визуализация пространственных реалистических сцен
- •8.1. Трехмерный графический конвейер
- •8.2. Свето-теневой анализ
- •8.3. Глобальная модель освещения с трассировкой лучей
- •8.4. Текстуры
- •8.5. Вопросы и упражнения
- •9. Введение в вычислительную геометрию
- •9.1 Вычислительная сложность алгоритмов
- •9.2 Основные геометрические объекты
- •9.3 Вопросы и упражнения
- •10. Триангуляция Делоне и диаграмма Вороного
- •10.1 Введение
- •10.2 Разбиение Делоне
- •10.3 Разбиение Вороного
- •Многогранник Вороного
- •Теорема о разбиении Вороного
- •10.4 Дуальность разбиений Вороного и Делоне
- •10.5 Алгоритм построения тетраэдризации Делоне
- •Триангуляция Делоне
- •Ячейки Вороного
- •10.6 Вопросы и упражнения
- •11. Алгоритмы построения выпуклой оболочки и триангуляции
- •11.1. Алгоритм построения выпуклой оболочки с использованием метода сортировки
- •11.2 Алгоритм построения триангуляции
- •12. Алгоритмы геометрического поиска
- •12.1 Поиск в плоском случае
- •12.2 Поиск на множестве тетраэдров
- •12.3 Поиск на множестве произвольных несамопересекающихся многогранников е3
- •12.4 Вопросы и упражнения
- •Список литературы
3.4. Вопросы и упражнения
Какие геометрические объекты считаются примитивами?
Какие требования предъявляются к набору геометрических примитивов?
В какой программе впервые в качестве геометрического примитива использовался прямоугольник?
Что такое объектная система координат?
Что такое система координат наблюдателя?
Соответствуют ли размеры объектов в системе координат наблюдателя их реальным размерам?
Что такое картинная плоскость?
Как называется операция перехода от трехмерной системы координат к двумерной?
Что происходит при перенесении изображения с картинной плоскости на экран?
Чем отличаются однородные координаты точки от обычных декартовых координат?
С какой целью водятся однородные координаты?
Сколько элементарных действий требуется для совмещения двух отрезков в пространстве?
Всегда ли использование матриц для выполнения преобразований в пространстве эффективней, чем другие способы их реализации?
4. Удаление невидимых поверхностей и линий
Задача удаления невидимых линий и поверхностей является одной из наиболее интересных и сложных в компьютерной графике. Алгоритмы удаления заключаются в определении линий ребер, поверхностей или объемов, которые видимы или невидимы для наблюдателя, находящегося в заданной точке пространства.
Необходимость удаления невидимых линий, ребер, поверхностей или объемов проиллюстрирована рис. 4.1. Рисунок наглядно демонстрирует, что изображение без удаления невидимых линий воспринимается неоднозначно.
Рис. 4.1. Неоднозначность восприятия изображения куба
Сложность задачи удаления невидимых линий и поверхностей привела к появлению большого числа различных способов ее решения. Многие из них ориентированы на специализированные приложения. Единого (общего) решения этой задачи, годного для различных случаев, естественно, не существует: для каждого случая выбирается наиболее подходящий метод. Например, для моделирования процессов в реальном времени требуются быстрые алгоритмы, в то время как для формирования сложного реалистического изображения, в котором представлены тени, прозрачность и фактура, учитывающие эффекты отражения и преломления цвета в мельчайших оттенках фактор времени выполнения уже не так существенен. Подобные алгоритмы работают медленно, и зачастую на вычисления требуется несколько минут или даже часов. Существует тесная взаимосвязь между скоростью работы алгоритма и детальностью его результата. Ни один из алгоритмов не может достигнуть хороших оценок для этих двух показателей одновременно. По мере создания все более быстрых алгоритмов можно строить все более детальные изображения. Реальные задачи, однако, всегда будут требовать учета еще большего количества деталей.
Все алгоритмы такого рода так или иначе включают в себя сортировку, причем главная сортировка ведется по геометрическому расстоянию от тела, поверхности, ребра или точки до точки наблюдения или картинной плоскости. Основная идея, положенная в основу сортировки по расстоянию, заключается в том, что чем дальше расположен объект от точки наблюдения, тем больше вероятность, что он будет полностью или частично заслонен одним из объектов, более близких к точке наблюдения. После определения расстояний, или приоритетов по глубине, остается провести сортировку по горизонтали и по вертикали, чтобы выяснить, будет ли рассматриваемый объект действительно заслонен объектом, расположенным ближе к точке наблюдения. Эффективность любого алгоритма удаления в значительной мере зависит от эффективности процесса сортировки.
Алгоритмы удаления невидимых линий или поверхностей можно классифицировать по способу выбора системы координат или пространства, в котором они работают. Алгоритмы, работающие в объектном пространстве, имеют дело с мировой системой координат, в которой описаны эти объекты. При этом получаются весьма точные результаты, ограниченные, вообще говоря, лишь погрешностью вычислений. Полученные изображения можно свободно масштабировать. Алгоритмы, работающие в объектном пространстве, особенно полезны в тех приложениях, где необходима высокая точность. Алгоритмы же, работающие в пространстве изображения, имеют дело с системой координат того экрана, на котором объекты визуализируются. При этом точность вычислений ограничена разрешающей способностью экрана.