
- •1. Цвет в компьютерной графике 13
- •2. Геометрические преобразования 20
- •3. Представление геометрической информации 37
- •4. Удаление невидимых поверхностей и линий 45
- •5. Проекции пространственных сцен 55
- •5.4. Вопросы и упражнения 67
- •10.6 Вопросы и упражнения 108
- •12.4 Вопросы и упражнения 118
- •Введение Предмет и область применения компьютерной графики
- •1. Отображение информации
- •2. Проектирование
- •3. Моделирование
- •4. Графический пользовательский интерфейс
- •Краткая история
- •Технические средства поддержки компьютерной графики
- •Вопросы и упражнения
- •1. Цвет в компьютерной графике
- •1.1. О природе света и цвета
- •1.2. Цветовой график мко
- •1.3. Цветовые модели rgb и cmy
- •1.4. Другие цветовые модели
- •1.5. Вопросы и упражнения
- •2. Геометрические преобразования
- •2.1. Системы координат и векторы на плоскости и в трёхмерном пространстве
- •2.2. Уравнения прямой и плоскости
- •2.3. Аналитическое представление кривых и поверхностей
- •2.4. Пересечение луча с плоскостью и сферой
- •2.5. Интерполяция функций одной и двух переменных
- •2.6. Матрицы
- •2.7. Геометрические преобразования (перенос, масштабирование, вращение)
- •2.8. Переход в другую систему координат
- •2.9. Задача вращения относительно произвольной оси
- •2.10. Вопросы и упражнения
- •3. Представление геометрической информации
- •3.1. Геометрические примитивы
- •Полигональные модели
- •Воксельные модели
- •Поверхности свободных форм (функциональные модели)
- •3.2. Системы координат: мировая, объектная, наблюдателя и экранная
- •3.3. Однородные координаты
- •3.4. Вопросы и упражнения
- •4. Удаление невидимых поверхностей и линий
- •4.1. Алгоритм Робертса
- •4.2. Метод z-буфера
- •4.3. Методы приоритетов (художника, плавающего горизонта)
- •4.4. Алгоритмы построчного сканирования для криволинейных поверхностей
- •4.5. Метод двоичного разбиения пространства
- •4.6. Метод трассировки лучей
- •4.7. Вопросы и упражнения
- •5. Проекции пространственных сцен
- •5.1. Основные типы проекций
- •Параллельные проекции
- •Центральные проекции
- •5.2. Математический аппарат
- •Ортогональные проекции
- •Косоугольные проекции
- •Центральные проекции
- •5.3. Специальные картографические проекции. Экзотические проекции земной сферы
- •Стереографическая проекция
- •Гномоническая проекция
- •Ортографическая проекция
- •Проекции на цилиндр
- •Проекция Меркатора
- •Проекции на многогранник
- •Необычные проекции
- •5.4. Вопросы и упражнения
- •6. Растровое преобразование графических примитивов
- •6.1. Алгоритм Брезенхема растровой дискретизации отрезка
- •6.2. Алгоритмы Брезенхема растровой дискретизации окружности и эллипса
- •6.3. Алгоритмы заполнения областей
- •6.4. Вопросы и упражнения
- •7. Закрашивание. Рендеринг полигональных моделей
- •7.1. Простая модель освещения
- •7.2. Закраска граней Плоское закрашивание
- •Закраска методом Гуро
- •Закраска методом Фонга
- •7.3. Более сложные модели освещения
- •7.4. Устранение ступенчатости (антиэлайзинг)
- •7.5. Вопросы и упражнения
- •8. Визуализация пространственных реалистических сцен
- •8.1. Трехмерный графический конвейер
- •8.2. Свето-теневой анализ
- •8.3. Глобальная модель освещения с трассировкой лучей
- •8.4. Текстуры
- •8.5. Вопросы и упражнения
- •9. Введение в вычислительную геометрию
- •9.1 Вычислительная сложность алгоритмов
- •9.2 Основные геометрические объекты
- •9.3 Вопросы и упражнения
- •10. Триангуляция Делоне и диаграмма Вороного
- •10.1 Введение
- •10.2 Разбиение Делоне
- •10.3 Разбиение Вороного
- •Многогранник Вороного
- •Теорема о разбиении Вороного
- •10.4 Дуальность разбиений Вороного и Делоне
- •10.5 Алгоритм построения тетраэдризации Делоне
- •Триангуляция Делоне
- •Ячейки Вороного
- •10.6 Вопросы и упражнения
- •11. Алгоритмы построения выпуклой оболочки и триангуляции
- •11.1. Алгоритм построения выпуклой оболочки с использованием метода сортировки
- •11.2 Алгоритм построения триангуляции
- •12. Алгоритмы геометрического поиска
- •12.1 Поиск в плоском случае
- •12.2 Поиск на множестве тетраэдров
- •12.3 Поиск на множестве произвольных несамопересекающихся многогранников е3
- •12.4 Вопросы и упражнения
- •Список литературы
2.5. Интерполяция функций одной и двух переменных
Помимо функций, заданных аналитически (т. е. с помощью элементарных функций, значения которых легко могут быть вычислены в любой точке области определения), на практике часто приходится иметь дело с таблично заданными функциями. В этом случае функция задается своими значениями на некотором дискретном множестве точек (узлов)из области определения. Если необходимо получить значение функции в какой-либо точке, не совпадающей с узлом, используют различные методы приближенного вычисления, которые основываются на некоторых априорных предположениях относительно этой функции. При этом сама процедура вычисления называется интерполяцией в случае, когда точка принадлежит заданной области, и экстраполяцией, если она лежит вне области.
В качестве предположений о характере дискретно заданной функции наиболее часто используемой и простой является то, что она кусочно-линейная, т. е. что в промежутках между узлами она ведет себя в соответствии с линейным законом. Тогда интерполяция называется линейной, и этот метод мы будем довольно часто применять в алгоритмах компьютерной графики.
Пусть на плоскости задана система
координат
и отрезок
на оси
,
на концах которого заданы значения
некоторой линейной
функции (рис. 2.3). Тогда для любой
точки
внутри заданного отрезка соответствующее
значение
вычисляется по формуле
,
.
Рис. 2.3. Линейная интерполяция функции одной переменной
Обратимся теперь к задаче интерполяции
функций двух переменных. В этом случае
наиболее простой также является
интерполяция
по трем заданным точкам опять же
с помощью кусочно-линейной функции.
Пусть на плоскости задан треугольник
с вершинами
и заданы значения функции в этих точках
.
Тогда три точки
определяют в пространстве треугольник,
который является плоской фигурой.
Предполагается, что площадь треугольника
больше нуля, или, как говорят, треугольник
невырожденный. Для определения
значения функции в произвольной точке
,
лежащей внутри треугольника, воспользуемся
так называемыми барицентрическими
координатами
этой точки. Геометрический смысл этих
координат заключается в том, что они
равны отношению площадей треугольников,
изображенных на рис. 2.4:
Рис. 2.4. Линейная интерполяция функции двух переменных
.
Эти числа неотрицательны и удовлетворяют следующим соотношениям:
.
Эти соотношения будем рассматривать
как уравнения для нахождения чисел
.
Определитель этой системы уравнений есть
и он по модулю равен удвоенной площади
треугольника, поэтому
,
следовательно, система имеет единственное
решение при любой правой части.
Воспользуемся формулами Крамера и
выпишем вид этого решения.
,
где
,
.
После того, как получены барицентрические
координаты точки
,
значение функции в ней рассчитывается
по формуле:
.
Существуют хорошо разработанные методы гладкой интерполяции функций. Особенно часто при интерполяции кривых и поверхностей используются сплайн-функции, которые гладко «склеиваются» из полиномов. Среди них следует выделить кубические сплайны, которые строятся из полиномов третьей степени. Они широко используются в инженерной геометрии благодаря простоте их вычисления и другим полезным свойствам.