- •Растворы. Способы выражения концентраций растворов (молярная, моляльная, массовая доля, мольная доля, молярная концентрация эквивалента).
- •Э.Д.С. Гальванического элемента. Элемент Даниэля-Якоби.
- •Свойства растворов неэлектролитов. Законы Рауля.
- •Осмос. Осмотическое давление растворов, закон Вант-Гоффа.
- •Электродные потенциалы.
- •Растворы электролитов. Особенности применения законов неэлектролитов к разбавленным растворам электролитов. Изотонический коэффициент.
- •Теория электролитической диссоциации.
- •Понятие о межфазной энергии и поверхностно-активных веществах.
- •Сильные и слабые электролиты. Степень диссоциации.
- •Шкала электродных потенциалов. Водородный электрод.
- •Константа диссоциации. Закон разбавления Оствальда.
- •Ступенчатая диссоциация многоосновных кислот и многокислотных оснований.
- •Свойства и устойчивость коллоидов. Коагуляция и седиментация коллоидов.
- •Труднорастворимые электролиты. Произведение растворимости.
- •Электродные реакции. Расчет э.Д.С. Гальванического элемента.
- •Растворимость. Условия образования осадка. Условия растворения осадка.
- •Адсорбция. Поверхностные явления. Поверхностный слой.
- •Электролитическая диссоциация воды. Водородный показатель.
- •Расчет рН в растворах сильных кислот и оснований (на примерах).
- •Дисперсное состояние вещества. Классификация дисперсных систем по степени дисперсности и агрегатному состоянию.
- •Расчет рН в растворе слабой кислоты.
- •Гидролиз солей.
- •Поверхностные явления. Адсорбция.
- •Степень гидролиза. Константа гидролиза.
- •Разрушение комплексных ионов. Константа нестойкости.
- •Факторы, влияющие на степень протекания гидролиза. Необратимый гидролиз.
- •Стандартные окислительно-восстановительные потенциалы.
- •Гидролиз солей многовалентных ионов.
- •Уравнение Нернста.
- •36Расчет рН в растворах солей, подвергающихся гидролизу (соль образована от слабой кислоты и сильного основания).
- •Свойства комплексных соединений.
- •34Расчет рН в растворах солей, подвергающихся гидролизу (соль образована от сильной кислоты и слабого основания).
- •Стандартный электродный потенциал как характеристика химической активности металлов.
- •Водородный показатель. Методы определения рН растворов.
- •Определение направления реакций окисления-восстановления.
- •Расчет рН в растворах солей, подвергающихся гидролизу (соль образована от слабой кислоты и слабого основания).
- •Коллоидное состояние вещества. Методы получения коллоидов.
- •Спектральные методы анализа.
- •Ароматические углеводороды.
- •Кислотно-основное титрование.
- •Алкены и их свойства.
- •Дробный и систематический качественный анализ.
- •Метод кондуктометрического титрования.
- •Методы определения рН.
- •Карбоновые кислоты
- •Электрохимические методы анализа.
- •Предельные спирты.
- •Окислительно-восстановительное титрование.
- •Фотометрический анализ. Закон Бугера-Ламберта-Бера.
- •Систематический качественный анализ
- •Альдегиды и кетоны
Понятие о межфазной энергии и поверхностно-активных веществах.
ПОВЕРХНОСТНАЯ ЭНЕРГИЯ - избыток (по сравнению с объёмными фазами) энергии поверхностного слоя между соприкасающимися фазами, приходящийся на единицу площади разделяющей поверхности.
При увеличении пов-сти раздела фаз уд. полная П. э. (на единицу пов-сти) e характеризует увеличение энергии системы. Она равна сумме мех. работы s образования единицы площади пов-сти и поглощаемой при этом теплоты q.
П. э. связана с меж молекулярным взаимодействием, т. к. состояние частиц (атомов, молекул) на границе раздела фаз отличается от состояния в объеме фаз вследствие нескомпен-сированности силовых полей частиц на пов-сти раздела
Вещества, понижающие поверхностное натяжение воды, получили название поверхностно-активных веществ – ПАВ. Молекулы ПАВ состоят из двух частей – неполярной углеводородной цепи, лиофобной по отношению к воде (гидрофобной) и полярной лифофильной (гидрофильной) группы на её конце. Примерами таких веществ может слушить валерьяновая кислота. В растоврах ПАВ возникают две тенденции: гидрофобные части молекул стремятся покиуть водную среду и перейти в среду с менее полярными молекулами – воздушную или образовать самостоятельную фазу. В тоже время гидрофильные части: карбоксильные, гидроксильные, аминогруппы, - сильно взаимодействуют с полярными молекулами воды, что препятсивует полному переходу ПАВ в оздушную среду или самостоятельную фазу. В результате эти молекулы концентрируются на поверхности так, что их полярные части «погружены» в воду, а неполярные «вытолкнуты» из неё.
Сильные и слабые электролиты. Степень диссоциации.
Слабые электролиты — химические соединения, молекулы которых даже в сильно разбавленных растворах незначительно диссоциированны на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.
Слабыми электролитами являются:
почти все органические кислоты и вода;
некоторые неорганические кислоты: HF, HClO, HClO2, HNO2, HCN, H2S, HBrO, H3PO4,H2CO3, H2SiO3, H2SO3 и др.;
многие основания: Fe(OH)3, Zn(OH)2 и др.
Сильные электролиты — химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. К сильным электролитам относятся многие неорганические соли, некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.).
К сильным относятся твёрдые вещества с ионной кристаллической решёткой (большинство солей, гидроксиды щелочных металлов), а также некоторые вещества, состоящие из молекул с полярной ковалентной связью – HCl, H2SO4? HNO3, HClO4, в ходе растворения которых под воздействием растворителя образуются ионы.
Степень диссоциации α равна отношению числа молекул, распавшихся на ионы, к общему числу молекул растворённого вещества.
Для случая электролита, диссоциирующего на два иона, например
При общей аналитической молярной концентрации фтороводорода, равной C, степень диссоциации α равна
Понятие степени диссоциации дало возможность разделить электролиты на слабые и сильные, правда эта классификация несколько условна, так как степень диссоциации зависит от концентрации. Сильные электролиты практически полностью диссоциируют в растворе, степень их диссоциации близка к единице. В случае слабых электролитов степень диссоциации мала – существенно меньше единицы. Условно принято относить к слабым электролиты с α<5% при концентрации порядка 0,1моль/л, а к сильным – с α>30%, а если 5%<α<30%, то это электролит средней силы.
