Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-52_Vosstanovlen.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
4.98 Mб
Скачать

32.Модель Коба-Дугласа та її оцінка

Розглянемо виробничу функцію Коба–Дугласа:

Y = ALC, (1.59)

де Y–валовий випуск, L–обсяг трудових ресурсів, С–обсяг капіталу (виробничих фондів), A, ,  – параметри. Коефіцієнт пропорційності A відображає рівень технології. Парамери  та  є коефіцієнтами еластичності відносно праці та капіталу (отже, функція Коба–Дугласа є виробничою функцією зі сталою еластичністю). Прологарифмувавши рівняння (1.59), маємо:

y = a + l + c, (1.60)

де a = lnA, l = lnL, c = lnC. Якщо ввести до рівняння (1.60) стохастичний доданок, то одержимо модель лінійної регресії: y = a + l + c +. (1.61)

Щоб перетворити вихідну модель (1.59) на стохастичну, обчислимо експоненту від обох частин рівності (1.61): Y = ALCe. (1.62)

Ми бачимо, що модель (1.62) можна звести до моделі лінійної регресіі. Аналогічно можна вивчати досить широкий клас моделей, які за допомогою перетворень змінних та рівнянь можна звести до моделі лінійної регресії. Широковживаним є приклад поліноміальної регресії:

.

33. Інтерпретація коефіцієнтів регресії. Порівняння факторів за ступенем їх впливу. Економічний зміст коефіцієнтів регресії.

Запишемо рівняння регресії у такому вигляді:

(2.25)

Якщо значення змінної xi змінити на одиницю, а решту змінних залишити постійними, то, як зрозуміло з (2.25), значення зміниться на bi одиниць. Таким чином, коефіцієнти регресійного рівняння є кількісною мірою впливу окремо взятих незалежних змінних на залежну змінну за умови ceteris paribus.

Коефіцієнти рересійного рівняння було б заманливо використовувати для порівняння різних незалежних змінних (факторів) за ступенем їх впливу на залежну змінну. Однак тут виникають деякі проблеми. Зокрема, величина регресійних коефіцієнтів залежить від одиніці виміру. Припустимо, наприклад, що деяка змінна має грошовий вимір. Якщо значення цієї змінної перерахувати з купонокарбованців у гривні, то відповідний коефіцієнт збільшиться у сто тисяч разів. Крім того, одиниці виміру різних змінних в моделі можуть мати різний економічний зміст. Отже, регресійні коефіцієнти не можна використовувати для порівняння дії різних факторів.

Найчастіше використовують два методи:

  1. Порівняння коефіцієнтів в регресії відносно стандартизованих змінних.

  2. Порівняння коефіцієнтів еластичності.

Регресія відносно стандартизованих змінних.

Розглянемо наступну модель лінійної регресії:

(1.54).

Введемо наступні позначення:

–середнє значення залежної змінної ,

, – середнє значення j-ї незалежної змінної ,

–середньоквадратичне відхилення залежної змінної ,

, – середньоквадратичне відхилення j-ї незалежної змінної ,

, –значення стандартизованої залежної змінної в i-му спостереженні

, , – значення стандартизованої j-ї незалежної змінної в i-му спостереженні.

Модель регресії відносно стандартизованих змінних записується у такому вигляді:

. (1.55)

Оскільки середні значення стандартизованих змінних дорівнюють нулю, то модель (1.55) не містить константи. Оцінки коефіцієнтів при стандартизованих змінних обчислюються за наступними формулами : , .

Зробимо такі зауваження. По-перше, оскільки середньоквадратичні відхилення мають ті самі розмірності, що і змінні, стандартизовані змінні є безрозмірними величинами. По-друге, середньоквадратичне відхилення можна інтерпретувати як типову для даної сукупності спостережень величину зміни змінної. Отже, можна сказати, що коефіцієнти стандартизованої регресії є мірою впливу незалежних змінних в термінах типової величини іх зміни.

Коефіцієнти еластичності.

Нехай змінна y залежить від змінних x1, ...,xk-1: y = f(x1,...,xk-1). Коефіцієнт еластичності змінної y відносно xi визначається так:

, (1.56)

Найчастіше використовують коефіцієнти еластичності попиту відносно ціни та доходу в моделях попиту. Коефіцієнт еластичності показує, на скільки відсотків зміниться y у відповідь на зміну xi у 1 відсоток за умови, що решта змінних залишиться постійною.

Застосовуючи означення (1.56) до рівняння вибіркової регересії (1.36), одержимо формули для обчислення вибіркових коефіцієнтів еластичності

, (1.57)

З формули (1.57) випливає, що коефіцієнти еластичності залежать від того, при якому значенні змінної вони обчислюються. Стандартним є обчислення коефіцієнтів еластичності при середніх значеннях змінних:

, (1.58)

Відзначимо, що для порівняння не існує критерія, придатного в усіх ситуаціях. При виборі критерія треба враховувати мету дослідження, використовувати знання з тієї галузі економічної теоріїї, яка вивчає досліджуваний об’єкт. Наприклад, при аналізі виробничої функції можна робити порівняння коефіцієнтів еластичності відносно праці та капіталу з урахуванням вартості зміни на один відсоток величини капіталу та обсягу трудових ресурсів.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]