- •Визначення економетрії як науки, її природа. Приклади використання економетричних моделей для розв’язування економічних задач.
- •Роль економетричних досліджень в економіці.
- •3. Предмет, цілі, задачі курсу — Економетрика.
- •4.Взаємозв’язки курсу із суміжними дисциплінами.
- •Основні типи економетричних моделей. Змінні та рівняння в економетричних моделях.
- •6. Етапи економетричного моделювання економічних процесів та явищ.
- •7. Загальний вигляд лінійної економетричної моделі та етапи її побудови
- •8. Специфікація економетричної моделі
- •12. Поняття адекватності і точності економетричної моделі
- •13. Перевірка значущості оцінок параметрів економетр моделі, статистичні критерії.
- •14. Перевірка статистичної значущості економ моделі в цілому, статистичні критерії.
- •15. Дисперсійний аналіз лінійної регресії.
- •16. Інтервальний прогноз залежної змінної на основі економетричної моделі. Стандартні помилки та надійність прогнозу
- •17. Проста лінійна регресія. Структура моделі та основні припущення при її побудові
- •18. Коефіцієнт детермінації.
- •26. Моделі, які зводяться до моделі простої (множинної мне кажется тут опечатка) лінійної регресії. Приклади застосування простої лінійної регресії.
- •27. Множинна лінійна регресія. Структура моделі та основні припущення при її побудові. Оцінка моделі.
- •28. Моделі, які зводяться до моделі множинної лінійної регресії.
- •29. Виділення сезонних коливань
- •30. Економетрична лінійна модель на основі нормалізованих даних
- •31. Регресійні залежності довільного типу
- •32.Модель Коба-Дугласа та її оцінка
- •33. Інтерпретація коефіцієнтів регресії. Порівняння факторів за ступенем їх впливу. Економічний зміст коефіцієнтів регресії.
- •34. Поняття мультиколінеарності, її природа.
- •35. Методи визначення мультиколінеатності та способи її усунення.
- •Засоби усунення мультиколінеарності. Метод головних компонентів
- •36. Поняття гомо- й гетероскедастичності, природа гетероскедастичності.
- •37. Метод перевірки гетероскедастичності на основі тесту Голдфелда-Квондта
- •3. Незалежність збурень:
- •4. Незалежність збурень та регресорів:
- •42. Методи визначення автокореляції
- •43. Критерій Дарбіна Уотсона
- •44. Метод Дарбіна
- •45. Узагальнений метод найменших квадратів у випадку відомої кореляційної матриці збурень.
- •46. Авторегресія першого порядку
- •47.Оцінювання моделі з автокорельованими збуреннями у випадку невідомої кореляційної матриці збурень.
- •48. Системи одночасних структурних рівнянь. Перехід до зведеної форми, їх взаємозв’язок.
- •49.Приклади систем одночасних рівнянь на макрорівні.
- •50. Поняття ідентифікації. Строго ідентифікована, неідентифікована і надідентифікована системи рівнянь
- •51. Проблеми оцінювання параметрів системи, загальна характеристика методів.
- •52.Непрямий метод найменших квадратів оцінювання параметрів строго ідентифікованих рівнянь системи.
- •53. Розрахунок параметрів системи економетричних рівнянь попиту і пропозиції непрямим мнк.
- •Для систем таких рівнянь потрібно застосовувати спеціальні методи оцінювання, оскільки в них регрес ори корельовано зі збуреннями.
- •54. Двоетапний мнк. Алгоритм.
- •55. Порядок аналізу часових рядів. Адитивна та мультиплікативна моделі
- •56. Лаговий оператор.
- •57. Міри точності прогнозів
- •58. Стаціонарність часових рядів
- •59. Метод усереднення
- •60. Метод експоненціального згладжування: звичайне, подвійне, потрійне
56. Лаговий оператор.
Аналізуючи часові ряди, зручно використовувати оператор лага (В або L), за допомогою якого можна отримувати значення часового ряду як функції від його інших значень. Буквально лаг означає запізнення і мається на увазі значення змінної у попередній період. Часто використання лагового оператору прихводить до втрати математичної строгості, але воно значно спрощує математичні обчислення. До лагового оператору можна застосовувати усі еретворення, що і до звичайної змінної.
Застосувавши В для знач. yt, отримаємо yt-1, тобто Вyt = yt-1.
Оператор лага можна застосовувати рекурентно:
В(Вyt)=Вyt-1 = yt-2
Якщо оператор лага діє k>0 разів, то число k записують як показник степеня:
Вkyt=B(Вk-1yt)= yt-k Нарешті: В0yt= yt
Можна утворювати поліноми від оператора лага:
Відомі наступні властивості лагового оператору:
ВС=С (лаг константи дорівнює константі)
Дистрибутивність:
Асоціативність:
Відємний лаг:
57. Міри точності прогнозів
Про точність прогнозу зазвичай судять за розміром помилки прогнозу - різниці між прогнозним і фактичним значенням досліджуваної змінної. Проте такий підхід до оцінювання точності можливий лише якщо дослідник має фактичні значення змінної. Отримані ретроспективно помилки прогнозу якоюсь мірою характеризують точність застосованої методики прогнозування і можуть виявитися корисними під час зіставляння кількох методів. Водночас розмір помилки ретроспективного прогнозу не можна розглядати як остаточний доказ придатності або, навпаки, непридатності застосовуваного методу прогнозування.
Перевірка точності одного прогнозу мало що може сказати. Гарний одиничний прогноз можна отримати і за поганою моделлю, і навпаки. Звідси випливає, що про якість прогнозів застосовуваних методик і моделей можна судити лише за сукупністю зіставлень прогнозів і їхньої реалізації.
Найбільш простою мірою якості прогнозів за умови, що є дані про їхню реалізацію, може стати відношення кількості випадків, коли фактичну реалізацію охоплював інтервальний прогноз, до загальної кількості прогнозів, тобто
де т - кількість прогнозів, підтверджених фактичними даними; р - кількість прогнозів, не підтверджених фактичними даними.
Коли всі прогнози підтверджуються, то р = 0 і Г) = 1; якщо ж усі прогнози не підтвердилися, то т, а отже, і г| дорівнюють 0.
Міра якості прогнозу Г. Тейла: коефіцієнт розбіжності, чисельником якого є середньоквадратична похибка прогнозу, а знаменник дорівнює квадратному кореню із середнього квадрата реалізації, тобто
де р - кількість періодів, на які розраховують прогноз.
Коефіцієнт V=0, коли всі уt prong= уt (випадок ідеального прогнозування); V = 1, коли процес прогнозування призводить до середньоквадратичної помилки "наївної" екстраполяції незмінності приростів; нарешті, V > 1, коли прогноз дає гірші результати, ніж припущення про незмінність досліджуваного явища. Верхньої межі коефіцієнт не має.
Коефіцієнт розбіжності можна використати під час зіставляння якості прогнозів, одержаних на основі різноманітних методів і моделей. У цьому його безсумнівна привабливість.
Також виокремлюють більш об'єктивні статистики точності прогнозів: МSЕ, RМSЕ, МАD, RМSPЕ, МАРЕ. Нехай yt_pr - прогноз значення часового ряду у t-му періоді, тоді:
Середньоквадратична
похибка прогнозу за р кроків;
-
корінь із середньокв-ї
похибки
середня абсолютна похибка за р кроків
к
орінь
із середньокв-ї похибки у відсотках
від фактичних значень
с
ередня
абсолютна похибка у відсотках
за р кроків.
На практиці ці характеристики використовують досить часто. Перші три критерії виражають похибку в одиницях виміру, тому їхня величина залежить від специфіки часового ряду. Останні два критерії вимірюються у відносних одиницях, тому можна говорити про деякий загальний рівень адекватності моделі на основі їх порівняння.
