
- •1. Клетка – элементарная -структурная единица всего живого. Структура и функции внутриклеточных органелл.
- •2. Поток информации, веществ и энергии в клетке.
- •3. Особенности пространственной организации белков. Фибриллярные и глобулярные белки.
- •4. Четыре уровня структурной организации белковых молекул.
- •5. Свойства и функции белков.
- •6. Многообразие функционально различных белков. Простые и сложные белки.
- •1. Ферменты
- •2. Регуляторные белки
- •3. Рецепторные белки
- •4. Транспортные белки
- •5. Структурные белки
- •6. Защитные белки
- •7. Сократительные белки
- •1. Простые белки
- •2. Сложные белки
- •7. Строение нуклеиновых кислот.
- •8. Особенности пространственной организации днк.
- •9. Особенности строения митохондриальной днк.
- •10. Свойства и функции днк.
- •11. Биосинтез днк (репликация).
- •12. Этапы репликации.
- •13. Строение рнк. Типы рнк в клетках. Функции рнк разных типов.
- •14. Особенности пространственной организации тРнк, мРнк, рРнк.
- •15. Генетический код и его свойства.
- •16. Биосинтез белка (транскрипция). Механизм транскрипции.
- •17. Биосинтез белка (трансляция). Основные этапы трансляции: инициации, элонгации, терминации
- •18. Понятие о гене. Классификация генов. Структурная организация генов прокариот и эукариот.
- •19. Понятие о геноме, организация генома человека.
- •20. Хромосомы. Уровни структурной организации хромосом.
- •21. Хроматин. Эухроматин и гетерохроматин.
- •22. Морфо – функциональная характеристика хромосом. Денверская и Парижская классификации хромосом.
- •23. Кариотип человека, идиограмма и карта хромосом человека.
- •24.Понятие о клеточном цикле. Фазы клеточного цикла, их продолжительность.
- •25. Митотический цикл и его периодизация. Митоз.
- •26.Амитоз, эндомитоз, политения. Понятие о апоптозе.
- •27. Законы Менделя: закономерности наследования при моногибридном скрещивании и их цитологические основы.
- •28. Законы Менделя: закономерности наследования при дигибридном скрещивании и их цитологические основы.
- •29. Менделирующие признаки человека. Основные термины и понятия генетики: наследственность, изменчивость, наследование, фенотип и генотип, гомозигота, гетерозигота, аллельные гены
- •31.Взаимодействие неаллельных генов.
- •32. Взаимодействие неаллельных генов.
- •33. Множественные аллели
- •34. Количественная и качественная специфика проявления генов в признаках:
- •35. Сцепленное наследование: аутосомная, полное, частичное.
- •36. Кроссинговер, механизмы и эволюционное значение.
- •37. Картирование генов, методы и значения
- •38. Хромосомная теория наследственности, доказательства и основные положения
- •39.Половой диморфизм, его генетический, морфофизиологический , эндокринный и поведенческие аспекты.
- •40. Изменчивость половой дифференциации и её причины. Трисомия по х-хромосоме, синдром Клайнфельтера, синдром Шершевского –Тернера и др.
- •42. Изменчивость, её формы. Фенотипическая изменчивость.
- •43. Изменчивость, её формы. Генотипическая изменчивость.
- •44. Комбинативная изменчивость. Значение в обеспечении генотипического разнообразия людей.
- •45. Хромосомные мутации: делеция, дупликация, инверсия, транслокация как результат нарушения рекомбинации. Примеры.
- •46. Полиплоидия, гаплоидия . Механизмы их обуславливающие.
- •47. Гетероплоидия. Понятие о хромосомных болезнях.
- •48. Спонтанные мутации, механизмы их возникновения.
- •49. Генные мутации. Понятие о генных болезнях.
- •50. Мутагенез. Мутагенные факторы.
- •51. Бесполое размножение у одноклеточных и у многоклеточных организмов.
- •52. Половое размножение у одноклеточных и у многоклеточных организмов.
- •53. Гаметогенез: сперматогенез и овогенез.
- •54. Мейоз ,цитологическая и цитогенетическая характеристика мейоза. Биологическое значение мейоза.
3. Особенности пространственной организации белков. Фибриллярные и глобулярные белки.
Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот(которые являются мономерами) и, в некоторых случаях, из модифицированных аминокислот . Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур на самом деле количество вариантов трудно переоценить: для цепочки из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации — белками, хотя это деление весьма условно.
При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-COOH) другой аминокислоты образуются пептидные связи. Концы белка называют N- и C-концом, в зависимости от того, какая из групп концевой аминокислоты свободна: -NH2 или -COOH, соответственно. При синтезе белка на рибосоме первая, N-концевая аминокислота обычно метионин, а новые аминокислоты присоединяются к C-концу предыдущей аминокислоты.
Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует в ДНК последовательность из трёх нуклеотидов — так называемый триплет или кодон.
Такой трёхкодонный код сложился эволюционно рано. Но существование различий в некоторых организмах, появившихся на разных эволюционных стадиях, указывает на то, что он был не всегда таким.
Согласно некоторым моделям, сначала код существовал в примитивном виде, когда малое число кодонов обозначало сравнительно небольшое число аминокислот. Более точное значение кодонов и большее число аминокислот могли быть введены позже. Сначала только первые два из трёх оснований могли быть использованы для узнавания [что зависит от структуры тРНК].
Гомологичные белки (предположительно, имеющие общее эволюционное происхождение и нередко выполняющие одну и ту же функцию), например, гемоглобины разных организмов, имеют во многих местах цепи идентичные, консервативные остатки аминокислот. В других местах находятся различные аминокислотные остатки, называемые вариабельными. По степени гомологии (сходства аминокислотной последовательности) возможна оценка эволюционного расстояния между таксонами, к которым принадлежат сравниваемые организмы.
Глобулярные белки
В отличие от нерастворимых фибриллярных белков растворимые белки имеют почти сферическую (глобулярную) форму. Глобулярным белкам свойственна высокоупорядоченная пространственная структура (конформация), которая способствует выполнению специфических биологических функций.
Глобулярные белки — водорастворимы, общая форма молекулы более или менее сферическая. Глобулярные белки́ — белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры — глобулы (третичные структуры белка)
К глобулярным белкам относятся ферменты, иммуноглобулины, некоторые гормоны белковой природы (например, инсулин) а также другие белки, выполняющие транспортные, регуляторные и вспомогательные функции.
Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру. Большинство фибриллярных белков не растворяется в воде, имеет большую молекулярную массу. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.
К фибриллярным белкам относят:
α-структурные фибриллярные белки (кератины, на долю которых приходится почти весь сухой вес волос и других роговых покровов, тропомиозин, белки промежуточных филаментов)
коллаген — белок сухожилий и хрящей.