
- •1. Клетка – элементарная -структурная единица всего живого. Структура и функции внутриклеточных органелл.
- •2. Поток информации, веществ и энергии в клетке.
- •3. Особенности пространственной организации белков. Фибриллярные и глобулярные белки.
- •4. Четыре уровня структурной организации белковых молекул.
- •5. Свойства и функции белков.
- •6. Многообразие функционально различных белков. Простые и сложные белки.
- •1. Ферменты
- •2. Регуляторные белки
- •3. Рецепторные белки
- •4. Транспортные белки
- •5. Структурные белки
- •6. Защитные белки
- •7. Сократительные белки
- •1. Простые белки
- •2. Сложные белки
- •7. Строение нуклеиновых кислот.
- •8. Особенности пространственной организации днк.
- •9. Особенности строения митохондриальной днк.
- •10. Свойства и функции днк.
- •11. Биосинтез днк (репликация).
- •12. Этапы репликации.
- •13. Строение рнк. Типы рнк в клетках. Функции рнк разных типов.
- •14. Особенности пространственной организации тРнк, мРнк, рРнк.
- •15. Генетический код и его свойства.
- •16. Биосинтез белка (транскрипция). Механизм транскрипции.
- •17. Биосинтез белка (трансляция). Основные этапы трансляции: инициации, элонгации, терминации
- •18. Понятие о гене. Классификация генов. Структурная организация генов прокариот и эукариот.
- •19. Понятие о геноме, организация генома человека.
- •20. Хромосомы. Уровни структурной организации хромосом.
- •21. Хроматин. Эухроматин и гетерохроматин.
- •22. Морфо – функциональная характеристика хромосом. Денверская и Парижская классификации хромосом.
- •23. Кариотип человека, идиограмма и карта хромосом человека.
- •24.Понятие о клеточном цикле. Фазы клеточного цикла, их продолжительность.
- •25. Митотический цикл и его периодизация. Митоз.
- •26.Амитоз, эндомитоз, политения. Понятие о апоптозе.
- •27. Законы Менделя: закономерности наследования при моногибридном скрещивании и их цитологические основы.
- •28. Законы Менделя: закономерности наследования при дигибридном скрещивании и их цитологические основы.
- •29. Менделирующие признаки человека. Основные термины и понятия генетики: наследственность, изменчивость, наследование, фенотип и генотип, гомозигота, гетерозигота, аллельные гены
- •31.Взаимодействие неаллельных генов.
- •32. Взаимодействие неаллельных генов.
- •33. Множественные аллели
- •34. Количественная и качественная специфика проявления генов в признаках:
- •35. Сцепленное наследование: аутосомная, полное, частичное.
- •36. Кроссинговер, механизмы и эволюционное значение.
- •37. Картирование генов, методы и значения
- •38. Хромосомная теория наследственности, доказательства и основные положения
- •39.Половой диморфизм, его генетический, морфофизиологический , эндокринный и поведенческие аспекты.
- •40. Изменчивость половой дифференциации и её причины. Трисомия по х-хромосоме, синдром Клайнфельтера, синдром Шершевского –Тернера и др.
- •42. Изменчивость, её формы. Фенотипическая изменчивость.
- •43. Изменчивость, её формы. Генотипическая изменчивость.
- •44. Комбинативная изменчивость. Значение в обеспечении генотипического разнообразия людей.
- •45. Хромосомные мутации: делеция, дупликация, инверсия, транслокация как результат нарушения рекомбинации. Примеры.
- •46. Полиплоидия, гаплоидия . Механизмы их обуславливающие.
- •47. Гетероплоидия. Понятие о хромосомных болезнях.
- •48. Спонтанные мутации, механизмы их возникновения.
- •49. Генные мутации. Понятие о генных болезнях.
- •50. Мутагенез. Мутагенные факторы.
- •51. Бесполое размножение у одноклеточных и у многоклеточных организмов.
- •52. Половое размножение у одноклеточных и у многоклеточных организмов.
- •53. Гаметогенез: сперматогенез и овогенез.
- •54. Мейоз ,цитологическая и цитогенетическая характеристика мейоза. Биологическое значение мейоза.
17. Биосинтез белка (трансляция). Основные этапы трансляции: инициации, элонгации, терминации
Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой.
Инициация
Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона (последовательность Шайна — Дальгарно у прокариот и последовательность Козак у эукариот). Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.
Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, IF; инициаторные факторы эукариот обозначают eIF, отангл. eukaryotes).
Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.
Элонгация
В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит аминоацилированную (заряженную аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует образование пептидной связи, происходит перенос растущей цепи пептида с Р-сайтовой тРНК на находящуюся в А-сайте, пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует так называемую транслокацию. Транслокация — перемещение рибосомы по мРНК на один триплет, в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). Цикл элонгации завершается, когда новая тРНК с нужным антикодоном приходит в A-сайт.[источник не указан 1309 дней]
Терминация
Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонами.
18. Понятие о гене. Классификация генов. Структурная организация генов прокариот и эукариот.
Ген — структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную ДНК, не входящую в геном организма, которая определяет их признаки.
Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.
Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Йогансеном.
В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.
Свойства гена
дискретность — несмешиваемость генов;
стабильность — способность сохранять структуру;
множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
аллельность — в генотипе диплоидных организмов только две формы гена;
специфичность — каждый ген кодирует свой признак;
плейотропия — множественный эффект гена;
экспрессивность — степень выраженности гена в признаке;
пенетрантность — частота проявления гена в фенотипе;
Классификация
В зависимости от выполняемых функций гены делятся на
1.Структурные гены – гены, контролирующие синтез структурных белков или ферментов
2. Регуляторные гены – гены, контролирующие синтез различных белков, влияющих на активность структурных генов. Регуляторные гены в свою очередь делятся на:
Гены – модификаторы – усиливающие и снижающие активность структурных генов.
Гены – супрессоры – подавляющие активность структурных генов
По влиянию на жизнеспособность организмов гены делятся на:
1 Летальные гены – гены, приводящие к гибели их носителей
2. Сублитальные гены – гены, приводящие к нарушению репродуктивной функции (стерильность, пониженная жизнеспособность или нежизнеспособность потомства) их носителей
3. Нейтральные гены – не влияющие на жизнеспособность организма.
Строение структурных генов прокариот и эукариот специфичное. У прокариот в большинстве случаев кодирующий участок непрерывен, в генах эукариот наряду с участками, кодирующими специфический для этого гена продукт (полипептид, рибосомную РНК, транспортную РНК), имеются некодирующие участки. Кодирующие участки гена получили, как уже упоминалось, название экзонов, некодирующие — интронов. В структурном гене экзоны чередуются с интронами. Ген как бы разорван. Число и внутригенная локализация интронов характерны для каждого гена. Размеры интронов различные (от нескольких десятков до нескольких тысяч нуклеотидных пар). Нередко на долю интронов в гене приходится больше нуклеотидов, чем на долю экзонов. Роль интронов мало изучена. Если бы они не выполняли определенных функций, были не нужны организму, элиминировались бы естественным отбором. Изучение гена продолжается. Современные сведения позволяют говорить о гене как об участке молекулы геномной нуклеиновой кислоты, представляющем единицу функции и способном изменяться и приобретать различные состояния путем мутирования и рекомбинаций. Это сложная, но в функциональном отношении целостная единица наследственности.
Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами).