
- •1.Классификация энергетических отходов.
- •2.Классификация вэр.
- •3.Направления использования вэр.
- •4.Основные показатели, характеризующие эффективность использования вэр.
- •5.Энергетический потенциал энергоносителей вэр.
- •7.Номенклатура горючих вэр.
- •8.Номенклатура тепловых вэр.
- •9.Тепловые вэр. Потенциал и направления использования в Беларуси.
- •10.Горючие вэр. Потенциал и направления использования в Беларуси.
- •11.Факторы обуславливающие низкий уровень использования вэр.
- •12.Основные направления повышения эффективности использования вэр
- •13. Определение объемов выхода горючих вэр.
- •14. Выход вэр, образующихся в виде теплоты отходящих газов топливосжигающих печей.
- •15. Выход тепловых вэр (в плавильных и обжиговых топливосжигающих технологических печах) с отходящими газами.
- •16. Выход тепловых вэр систем охлаждения.
- •Выход вэр избыточного давления для газообразных энергоносителей.
- •Выработка энергии за счет тепловых вэр пара или горячей воды.
- •Выработка электроэнергии в утилизационном турбоагрегате за счет вэр.
- •Комбинированное направление использования вэр.
- •Экономия условного топлива за счет использования вэр.
- •22. Показатели энергосберегающих мероприятий за счет использования вэр.
- •23. Технические требования газообразных горючих вэр. (стб 1903-2010)
- •24. Назначение и область применения котлов утилизаторов.
- •Классификация энерготехнологических установок.
- •Пути использования высокотемпературных тепловых отходов.
- •Номенклатура типоразмеров котлов-утилизаторов.
- •28.Проектирование блоков утилизации тепла уходящих газов
- •Уравнение теплового баланса котла-утилизатора.
- •Расчет конвективных поверхностей нагрева.
- •Организация водного режима.
- •Классификация термических деаэраторов.
- •33. Продувка котлов-утилизаторов
- •34. Уравнения теплового баланса деаэратора.
- •35. Тяго-дутьевая установка котлов-утилизаторов
- •36. Водяные экономайзеры. Рекомендации по проектированию.
- •Стальной водяной экономайзер.
- •38. Пароперегреватель. Рекомендации по проектированию.
- •39,40 Трубчатые стальные воздухоподогреватели. Рекомендации по проектированию. Чугунные воздухоподогреватели. Рекомендации по проектированию.
- •Пластинчатые воздухоподогреватели. Рекомендации по проектированию.
- •Регенеративный подогреватель. Рекомендации по проектированию.
- •43.Источники и возможные потребители низкопотенциальных вэр.
- •44.Балансовая теплотехнологическая схема промышленного производства.
- •45. Рационализация использования низкопотенциальных вэр.
- •Технические средства для утилизации тепла низкопотенциальных вэр.
- •Пластинчатые утилизаторы для утилизации низкопотенциальных вэр.
- •Роторные теплообменники для утилизации низкопотенциальных вэр.
- •Роторные теплообменники для вентиляционных систем
- •Теплоутилизаторы с промежуточным теплоносителем. Рекомендации по проектированию.
- •Использование древесной и растительной биомассы в качестве вэр.
- •Классификация и выход древесных отходов.
- •52.Особенности древесной биомассы как топлива.
- •Основные виды топочных процессов при сжигании древесной биомассы.
- •Слоевой процесс сжигания твердого топлива.
- •Факельный способ сжигания твердого топлива.
- •Вихревой процесс сжигания твердого топлива.
- •Особенности использования коры как источника вэр.
- •Особенности сжигания древесной коры.
- •Основные пути экономии топлива в котельных лесопромышленных предприятий.
- •Экономика энергетического использования древесных и растительных отходов.
Вихревой процесс сжигания твердого топлива.
Схема способа сжигания твердого топлива , где
1 – топливо, 2 - воздух
При вихревом методе сжигания сравнительно крупные частицы дробленки твердых топлив сгорают, циркулируя в газовоздушном вихре, организуемом в нижней части обычной однокамерной топки, имеющей обтекаемую форму.
В вихревых топках благодаря циркуляционному движению увеличивается время пребывания топливных частиц в камере, а благодаря значительно большему запасу горящего топлива по сравнению с пылеугольными топками достигается большая устойчивость процесса горения.
Вихревой метод как самостоятельный способ сжигания твердых топлив в виде дробленки, без их предварительного размола в мельницах, пока имел ограниченное применение. В энергетике этот метод был использован в топке Шершнева для сжигания фрезерного торфа в парогенераторах производительностью 20 кг/с (75 т/ч). В дальнейшем для сжигания фрезерного торфа стали применять топки с молотковыми мельницами, в которых обеспечивается более интенсивное сжигание при меньших потерях с механическим недожогом. В последние годы проводятся значительные работы по усовершенствованию и освоению вихревого метода сжигания фрезерного торфа и бурых углей и созданию более совершенной конструкции вихревых топок. Вихревое сжигание широко применяют в циклонных предтопках двухкамерных топок с жидким шлакоудалением. Стабилизация горения при больших скоростях подачи воздуха в циклонную камеру, доходящих до 150—200 м/с, и значительная интенсификация тепло- и массообмена в штоке с частицами топлива при большой относительной скорости их обтекания привели к тому, что топки с вихревым сжиганием по интенсивности работы вышли на одно из первых мест среди современных топочных устройств.
В промышленности вихревой метод применяется для сжигания фрезерного торфа, древесных отходов и лузги в мелких парогенераторах с твердым шлакоудалением
Особенности использования коры как источника вэр.
Использование на топливо древесной коры затрудняется рядом объективных обстоятельств:
-Высокая влажность коры в свежесрубленном состоянии;
-Повышенная способность коры к водопоглащению;
-Повышенное по сравнению со стволовой древесиной содержание золы;
-Крайне широкие пределы изменения размеров частиц коры отделенной в окорочных барабанах и окорочных станках;
-Применение водных бассейнов для проведения сортировки пиловочника и его подготовке к окорке;
-Использование парового объема при окорке древевсины окорочными барабанами в зимних условиях
Объем
образования коры. Объемы
образования коры определяют исходя из
годового плана окорки древесины по
породам и подсчитывают по формуле:
Где Vi- годовой объём окорки древесины по плану, м3; ni- средний процент содержания коры от объема окариваемого сырья ,%.
Теплотехническая оценка коры как вторичного горючего энергетического ресурса в тоннах условного топлива :
;
Где Qк –ресурс коры, т у.т, Эi-калорийный эквиваленткоры данной породы, определенный в конкретных условий работы окорочного цеха
Предварительная подсушка высоковлажной коры
Если влажность коры ниже, то ее можно эффективно сжигать в топках без предварительного обезвоживания или подсушки.
На подсушку коры потребуется сжечь часть подсушенной коры. Эту часть в процентах можно определить по формуле:
Где Wp- относительная влажность коры после окорки, %; Wpn- влажность коры после подсушки, %; Qрн-теплота сгорания подсушенной коры, кДж/кг; nc-КПД сушилки; bn- расход подсушенной коры на процесс сушки от массы подсушенной коры