
- •Предмет и роль органической химии. Теория химического строения органических соединений а.М. Бутлерова и ее значение.
- •Явление изомерии органических соединений, ее типы.
- •Электронные представления в органической химии. Строение атома углерода. Гибридизация орбиталей (валентные состояния атома углерода). Ковалентная связь и ее виды (простая, или δ- и кратные).
- •Классификация органических реакций (по характеру химических превращений и по механизму протекания). Гомолитические (радикальные) и гетеролитические (ионные) реакции.
- •Получение.
- •1. Галогенирование
- •2. Нитрование алканов
- •Строение алкадиенов: а) молекулярное
- •Алкины. Гомологический ряд ацетиленовых углеводородов, общая формула. Изомерия, номенклатура, получение. Строение, химические свойства. Практическое использование ацетилена и винилацетилена.
- •Получение:
- •1) В промышленном масштабе для технических целей ацетилен получают высокотемпературным пиролизом метана.
- •Реакции присоединения:
- •1) Гидрирование. Гидрирование алкинов осуществляется при нагревании с теми же металлическими катализаторами (Ni, Pd или Pt), что и в случае алкенов, но с меньшей скоростью.
- •Спирты. Предельные одноатомные спирты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства.
- •Химические свойства спиртов.
- •Многоатомные спирты. Классификация. Этиленгликоль и глицерин. Получение. Химические свойства, идентификация. Практическое использование.
- •Фенолы. Изомерия и номенклатура. Химические свойства. Химическая идентификация фенола. Практическое использование в синтезе высокомолекулярных органических соединений.
- •Химические свойства
- •1. Реакции с участием гидроксильной группы
- •2. Реакции с участием бензольного кольца
- •Предельные двухосновные карбоновые кислоты. Номенклатура. Химические свойства. Адипиновая и терефталевая кислоты, практическое использование в синтезе полимеров.
- •Номенклатура. Систематические названия двухосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса -диовая и слова кислота.
- •Амины. Классификация. Изомерия, номенклатура. Способы получения. Строение аминов и химические свойства. Практическое использование.
- •Классификация По радикалу:
- •По функциональным группам
- •Имеют структуру типа rch(nh2)co2h.
- •Общие химические свойства
- •Пептид — семейство веществ, молекулы которых построены из остатков α-аминокислот, соединённых в цепь пептидными (амидными) связями —c(o)nh—.
- •Углеводы. Химическая природа. Классификация. Распространение в природе, биологическая роль и практическое значение.
- •Биологическая роль углеводов:
- •Углеводы. Моносахариды (глюкоза, фруктоза). Строение (открытая и циклическая формы). Способы получения. Химическая идентификация (восстанавливающие свойства).
- •Получение углеводов
- •В растениях углеводы образуются из двуокиси углерода и воды в процессе сложной реакции фотосинтеза, осуществляемой за счет солнечной энергии с участием зелёного пигмента растений - хлорофилла.
- •Дисахариды (мальтоза, целлобиоза, сахароза). Строение. Получение. Химические свойства. Химическая идентификация восстанавливающих дисахаридов.
- •Целлобиоза — состоит из двух остатков глюкозы.
- •Способы получения дисахаридов:
- •Химические свойства
- •Отличительные особенности полимерного состояния вещества. Физические свойства полимеров и геометрическая форма макромолекул.
- •Методы синтеза полимеров. Реакция полимеризации, основные закономерности. Реакция поликонденсации, отличительные особенности. Примеры получения полимеризационных и поликонденсационных полимеров.
- •Химические превращения полимеров. Полимераналогичные реакции и их практическое использование.
- •Химические превращения полимеров. Макромолекулярные реакции (межмолекулярные и деструктивные). Деструкция полимеров, ее виды. Стабилизация полимеров и виды стабилизаторов.
- •Волокна. Общая характеристика. Строение макромолекул и свойства. Натуральные волокна (белковые и целлюлозные). Природные источники, химический состав, свойства и применение.
- •Искусственные волокна (ацетатные, вискозное), синтетические волокна (полиамидные, полиэфирные, полиакрилонитрильные, поливинилхлоридные). Свойства и применение.
Классификация По радикалу:
Неполярные
Полярные незаряженные (заряды скомпенсированы) при pH=7
Полярные заряженные отрицательно при pH<7
Полярные заряженные положительно при pH>7
По функциональным группам
Алифатические
Моноаминомонокарбоновые
Оксимоноаминокарбоновые
Моноаминодикарбоновые
Амиды моноаминодикарбоновых
Диаминомонокарбоновые
Серосодержащие
Ароматические
Гетероциклические
Иминокислоты
По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.
Например:
Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита. Пример:
α-Аминокислоты. В природе встречается более 70 аминокислот, почти все они за исключением пролина и оксипролина
Имеют структуру типа rch(nh2)co2h.
α-Аминокислоты образуются при гидролизе пептидов и белков.
Общие химические свойства
Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основные свойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами.
Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.
Этерификация:
NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)
Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.
Реакция образования пептидов:
HOOC —CH2 —NH —H + HOOC —CH2 —NH2 → HOOC —CH2 —NH —CO —CH2 —NH2 + H2O
Пептид — семейство веществ, молекулы которых построены из остатков α-аминокислот, соединённых в цепь пептидными (амидными) связями —c(o)nh—.
Полипептиды - органические соединения, содержащие от 6 до 80—90 аминокислотных остатков.
Наибольший интерес представляют 20 L-α-аминокислот, входящих в состав белковых молекул. Смеси L-аминокислот, а также индивидуальные аминокислоты применяют в медицине для парентерального питания больных с заболеваниями пищеварительных и других органов, при нарушениях обмена веществ и др.; лизин, метионин, треонин, триптофан - в животноводстве для обогащения кормов; глутамат натрия и лизин - в пищевой промышленности.
№20.
Углеводы. Химическая природа. Классификация. Распространение в природе, биологическая роль и практическое значение.
Углеводы — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.
По химической природе углеводы – полиоксикарбонильные соединения: их углеродный скелет несёт какую-либо карбонильную группу (альдегидную, кетонную, карбоксильную) и несколько гидроксильных групп. Общую формулу многих углеводов можно представить в виде Cm(H2O)n, т.е. углерод + вода (отсюда название – углеводы).
Классификация:
Моносахариды (простые углеводы) - самые простые представители углеводов и при гидролизе не расщепляются до более простых соединений. Моносахариды - самый быстрый и качественный источник энергии для процессов, происходящих в клетке.
Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов.
Полисахариды - высокомолекулярные соединения - полимеры, образованные из большого числа моносахаридов. Они делятся на перевариваемые (крахмал, гликоген) и не перевариваемые (пищевые волокна - клетчатка, гемицеллюлоза, пектиновые вещества) в желудочно-кишечном тракте.
Углеводы широко распространены в природе и выполняют в живых организмах различные важные функции. Они поставляют энергию для биологических процессов, а также являются исходным материалом для синтеза в организме других промежуточных или конечных метаболитов.