- •1.Понятие об идеальном газе, Законы и уравнения состояния идеального газа
- •2.Внутренняя энергия, работа и теплота в термодинамике. Теплоёмкость вещ-ва. Работа расширения газа
- •3. Вероятность и флюктуации. Распределение Максвелла и его Зависимость от температуры. Среднее значение скоростей и наиболее вероятная скорость
- •4.Распределение числа частиц по высоте. Распределение Больцмана. Распределение Максвелл-Больцмана
- •5. Реальные газы. Уравнение Ван-дер-Вальса. Критическое состояние. Эффект Джоуля-Томсона
- •6.Изотермы Эндрюса и Ван-Дер-Ваальса. Метастабильные сотояния. Физический смысл критического сотояния
- •7.Фазы и компоненты. Условие равновесия фаз. Фазовые переходы первого и второго уровня
- •8.Уравнение Клапейрона-Клаузиуса. Фазовые диаграммы. Тройная точка
- •9. Понятие о физической кинетике. Время релаксации. Эффективное сечение рассеяния. Средняя длина свободного пробега
- •10. Строение кристаллов. Точечные дефекты в кристаллах: вакансии. Примеси внедрения, замещения.
- •11. Элементы зонной теории кристаллов. Заполнение зон: металлы, диэлектрики, полупроводники.
- •12.Полупроводники. Понятие дырочной проводимости. Собственные и примесные полупроводники
- •13. Электрический ток в вакууме. Термоэлектронная эмиссия
13. Электрический ток в вакууме. Термоэлектронная эмиссия
Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии. Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj. Соответственно потенциальная энергия электрона уменьшается на eDj. Распределение имеет вид потенциальной ямы, ее глубина eDj=W0 - Ec (электронное сродство); Ф = W0 - F - термоэлектронная работа выхода (работа выхода).
Рассмотрим термоэлектронную эмиссию. Если испущенные раскаленным металлом электроны ускорить электрическим полем, то они образуют ток. Такой электронный ток может быть получен в вакууме, где столкновения с молекулами и атомами не мешают движению электронов. Для наблюдения термоэлектронной эмиссии может служить пустотная лампа, содержащая два электрода: один в виде проволоки из тугоплавкого материала, накаливаемый током (катод), и другой, холодный электрод, собирающий термоэлектроны (анод). Аноду чаще всего придают форму цилиндра, внутри которого расположен накаливаемый катод. Цепь содержит диод, подогреваемый катод которого соединен с отрицательным полюсом батареи, а анод - с ее положительным полюсом; миллиамперметр, измеряющий силу тока через диод, и вольтметр, измеряющий напряжение между катодом и анодом. При холодном катоде тока в цепи нет, так как сильно разряженный газ (вакуум) внутри диода не содержит заряженных частиц. Если катод раскалить с помощью дополнительного источника, то миллиамперметр зарегистрирует появление тока.
