
- •1.Декартова и полярная системы координат на плоскости. Формулы,связующие координаты точки в этих системах. Декартова система координат в пространстве.
- •2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
- •3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
- •4.Деление отрезка в заданном отношении.
- •5. Понятие радиус-вектора. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •6.Действия с геометрическими векторами в координатной форме. Признак коллинеарности векторов.
- •7.Скалярное произведение геометрических векторов и его свойства. Признак ортогональности векторов.
- •8.Вычисление скалярного произведения векторов через их координаты, длина вектора, расстояние между двумя точками. Вычисление косинуса угла между двумя точками.
- •9. Направляющие косинусы вектора и их свойства.
- •10.Векторное произведение: определение ,вычисление и свойства.
- •11. Смешанное произведение: определение, вычисление, геометрический смысл.
- •12. Общее уравнение прямой на плоскости и его исследование.
- •13. Уравнение прямой с угловым коэффициентом. Геометрический смысл коэффициентов. Пучок прямых
- •14. Уравнение прямой, проходящей через две заданные точки на плоскости и в пространстве.
- •15.Угол между прямыми. Условия параллельности и перпендикулярности прямых на плоскости.
- •16. Общее уравнение плоскости и его исследование
- •17.Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.
- •18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
- •23.Определение эллипса и его каноническое уравнение.
- •24. Определение гиперболы и ее каноническое уравнение.
- •25.Определение параболы и ее каноническое уравнение.
- •27.Действия с матрицами (сложение, умножение на скаляр, перемножение матриц, транспонирование матриц). Законы, которым эти действия удовлетворяют.
- •28. Определение определителя и его свойства.
- •29.Определитель, минор и алгебраическое дополнение элемента определителя.
- •30.Обратная матрица. Теорема о существовании и единственности обратной матрицы. Способы вычисления обратной матрицы.
- •31)Определение ранга матрицы. Базисный минор. Вычисление ранга матрицы с помощью элементарных преобразований.
- •32.Система линейных уравнений и ее решение. Различные формы записи системных уравнений. Определение однородной, неоднородной, совместной, несовместной, определенной и неопределенной системы.
- •Векторная форма записи
- •Матричная форма записи
- •33.Матричный способ решения систем линейных уравнений.
- •34.Формулы Крамера.
- •35. Формула Кронекера Капелли.
- •36.Условия определенности и неопределенности систем линейных уравнений.
- •37.Решение систем линейных уравнений методом Гаусса.
- •38)Теорема о совместимости однородной системы линейных уравнений
- •39)Теорема о существовании ненулевых решений однородных линейных уравнений.
- •40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
- •41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
- •42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
- •2) Критерий линейной зависимости векторов
- •43) Базис линейного пространства. Примеры базисов в
- •44. Теорема о единственности разложении вектора линейного пространства по базису.
- •45.Подпространство линейного пространства. Линейная оболочка системы векторов. Сумма и пересечение подпространств. Примеры подпространств.
- •46.Собственные числа и собственные векторы квадратной матрицы и их свойства.
- •47.Характерестическое уравнение , соответствующие квадратной матрице . Теорема о связи собственных чисел матрицы с корнями этого уравнения.
- •48. Линейные операторы. Основные понятия.
- •49. Комплексные числа в алгебраической форме записи .Геометрическое изображение комплексных чисел. Действия с комплексными числами в алгебраической форме записи .Решение алгебраических уравнений
- •50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
- •51. Действия с комплексными числами. Формула Муавра
17.Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. Доказывается, что этот угол не зависит от выбора такой плоскости. Угол между двумя параллельными плоскостями принимается равным нулю.
Две
плоскости α1 и α2 параллельны тогда и
только тогда, когда их нормальные векторы
n1
иn2
параллельны, а значит
Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:
Ясно,
что две плоскости перпендикулярны тогда
и только тогда, когда их нормальные
векторы перпендикулярны, а следовательно,
или
18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
Каноническое. Каноническое уравнение получается из параметрических уравнений делением одного уравнения на другое:
где
— координаты
и
направляющего вектора прямой,
и
координаты точки, принадлежащей прямой.
Параметрическое. Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.
Это векторное уравнение может быть представлено в координатной форме:
Общее уравнение прямой. Линия в трехмерном пространстве определяется, вообще говоря, пересечением двух поверхностей, т.е. описывается системой двух уравнений.
Прямую в пространстве можно рассматривать как линию пересечения двух плоскостей и, следовательно, описывать системой двух линейных уравнений
A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D2 = 0
при условии, что эти плоскости непараллельны, т.е. их нормальные векторы →n1 = {A1, B1, C1} и →n2 = {A2, B2, C2} неколлинеарны. Эта система уравнений называется общими уравнениями прямой в пространстве.
19.Условия параллельности и перпендикулярности прямых в пространстве.
Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие координаты были пропорциональны.
Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы направляющие векторы этих прямых были перпендикулярны, т.е. косинус угла между ними равен нулю.
20. Условия параллельности и перпендикулярности плоскости и прямой в пространстве.
Если прямая L параллельна плоскости Q, то векторы n и S перпендикулярны, а потому S*n=0,
Am+Bn+Cp=0, является условием параллельности прямой и плоскости.
Если прямая L перпендикулярна плоскости Q, то векторы n и S параллельны. Поэтому равенства
A\m=B\n=C\p, являются условием перпендикулярности прямой и плоскости.
21.Угол между прямой и плоскостью.
Синус
угла
между
прямой
и плоскостью
равен косинусу угла
между
нормалью (
)
к плоскости и направляющим вектором
прямой (
),
поскольку эти два угла в сумме равны
90°.
То
есть синус угла
между
прямой, направляющий вектор которой
имеет координаты
и плоскостью, заданной уравнением
вычисляется по формуле:
22.Окружность и ее уравнение.
Простейшей кривой второго порядка является окружность. Окружностью, радиуса Rс центром в точке M0, называется множество всех точек М плоскости , удовлетворяющих условию ММ0=R
Окружность — геометрическое место всех точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное неотрицательное расстояние, называемое её радиусом
Уравнение:
Уравнению удовлетворяют координаты любой точки M(x,y)данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности. Это каноническое уравнение окружности.
Если предположить что х0=0 и у0=0 , то получим уравнение окружности с центром в начале координат х²+у²=R².