- •1.Декартова и полярная системы координат на плоскости. Формулы,связующие координаты точки в этих системах. Декартова система координат в пространстве.
- •2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
- •3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
- •4.Деление отрезка в заданном отношении.
- •5. Понятие радиус-вектора. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •6.Действия с геометрическими векторами в координатной форме. Признак коллинеарности векторов.
- •7.Скалярное произведение геометрических векторов и его свойства. Признак ортогональности векторов.
- •8.Вычисление скалярного произведения векторов через их координаты, длина вектора, расстояние между двумя точками. Вычисление косинуса угла между двумя точками.
- •9. Направляющие косинусы вектора и их свойства.
- •10.Векторное произведение: определение ,вычисление и свойства.
- •11. Смешанное произведение: определение, вычисление, геометрический смысл.
- •12. Общее уравнение прямой на плоскости и его исследование.
- •13. Уравнение прямой с угловым коэффициентом. Геометрический смысл коэффициентов. Пучок прямых
- •14. Уравнение прямой, проходящей через две заданные точки на плоскости и в пространстве.
- •15.Угол между прямыми. Условия параллельности и перпендикулярности прямых на плоскости.
- •16. Общее уравнение плоскости и его исследование
- •17.Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.
- •18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
- •23.Определение эллипса и его каноническое уравнение.
- •24. Определение гиперболы и ее каноническое уравнение.
- •25.Определение параболы и ее каноническое уравнение.
- •27.Действия с матрицами (сложение, умножение на скаляр, перемножение матриц, транспонирование матриц). Законы, которым эти действия удовлетворяют.
- •28. Определение определителя и его свойства.
- •29.Определитель, минор и алгебраическое дополнение элемента определителя.
- •30.Обратная матрица. Теорема о существовании и единственности обратной матрицы. Способы вычисления обратной матрицы.
- •31)Определение ранга матрицы. Базисный минор. Вычисление ранга матрицы с помощью элементарных преобразований.
- •32.Система линейных уравнений и ее решение. Различные формы записи системных уравнений. Определение однородной, неоднородной, совместной, несовместной, определенной и неопределенной системы.
- •Векторная форма записи
- •Матричная форма записи
- •33.Матричный способ решения систем линейных уравнений.
- •34.Формулы Крамера.
- •35. Формула Кронекера Капелли.
- •36.Условия определенности и неопределенности систем линейных уравнений.
- •37.Решение систем линейных уравнений методом Гаусса.
- •38)Теорема о совместимости однородной системы линейных уравнений
- •39)Теорема о существовании ненулевых решений однородных линейных уравнений.
- •40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
- •41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
- •42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
- •2) Критерий линейной зависимости векторов
- •43) Базис линейного пространства. Примеры базисов в
- •44. Теорема о единственности разложении вектора линейного пространства по базису.
- •45.Подпространство линейного пространства. Линейная оболочка системы векторов. Сумма и пересечение подпространств. Примеры подпространств.
- •46.Собственные числа и собственные векторы квадратной матрицы и их свойства.
- •47.Характерестическое уравнение , соответствующие квадратной матрице . Теорема о связи собственных чисел матрицы с корнями этого уравнения.
- •48. Линейные операторы. Основные понятия.
- •49. Комплексные числа в алгебраической форме записи .Геометрическое изображение комплексных чисел. Действия с комплексными числами в алгебраической форме записи .Решение алгебраических уравнений
- •50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
- •51. Действия с комплексными числами. Формула Муавра
2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
В геометрии вектором называется всякий направленный отрезок. Вектор- называется всякая величина, обладающая направлением. Вектор, началом которого служит точка А, а концом точка- В, обозначается АВ.
Длина вектора, также называется модулем. Модуль это скалярная величина, обозначается двумя вертикальными чертами.
Нуль-вектор- это вектор длина которого равна 0.
Равенство векторов- два(ненулевых)вектора а и b равны, если они равнонаправленные и имеют один и тот же модуль. Все нулевые векторы считаются равными. Во всех остальных случаях векторы не равны. Вектор можно переносить параллельно самому себе , а начало вектора помещать в любую точку О пространства. Равные векторы так же называют свободными.
Коллинеарные – векторы а иb называются коллинеарными, если они лежат на одной прямой или на параллельных прямых; записывают, а||b. Коллинеарные векторы могут быть направлены одинаково или противоположно. Нулевой вектор считается коллинеарным любому вектору.
Компланарные- три вектора в пространстве называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях. Если среди трех векторов, хотя бы один нулевой или два любые коллинеарные, то такие векторы компланарны.
Орт вектор- вектор, длина которого равна единице, называется единичным вектором и обозначается через ē. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора а и обозначается а°.
3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
Под линейными операциями понимают операции сложения и вычитания векторов, а так же умножение вектора на число.
Пусть а и b- два произвольных вектора. Возьмем произвольную точку О и построим вектор ОА=а. от точки А отложим вектор АВ=b. Вектор ОВ, соединяющий начало первого вектора с концом второго , называется суммой векторов а и b: ОВ= а+b. Это правило сложения двух векторов называют правилом треугольника. Сумму двух векторов так же можно построить по правилу параллелограмма (если они не коллинеарные). Из любого начала О строим векторы ОА=а и ОВ=b, на отрезках ОА и ОВ строим параллелограмм ОАСВ. Вектор диагонали ОС и есть сумма векторов а и b(так как АС=ОВ=b и ОС=ОА+АС). К коллинеарным векторам это построение неприменимо.
Разность векторов- вычесть вектор а1(вычитаемое) из вектора а2(уменьшаемым) значит найти новый вектор х(разность), который в сумме с вектором а1 дает вектор а2. Из произвольного начала О строим векторы ОА1=а1 и ОА2=а2. Вектор А1А2(проведенный из конца вычитаемого вектора к концу уменьшаемого)есть разность а2-а1: А1А2= ОА2-ОА1
Произведение вектора а на скаляр(число)- называется лямбда*а, который имеет длину |лямбда|*|а|, коллинеарное вектору а, имеет направление вектора а, если лямбда >0 и противоположенное направление, если лямбда <0
Законы: если b= лямбда*а, то b||а. 2) всегда а=|а|* а°, т.е каждый вектор равен произведению его модуля на орт вектор. Линейные операции над векторами обладают следующими свойствами:
а+b= b+а
(а+b)+с= а+(b+с)
Лямбда1*(лямбда2*а)= лямбда1*лямбда2*а
(лямбда1+лямбда2)*а= лямбда1*а+лямбда2*а
Лямбда*(а+b)= лямбда*а+ лямбда*b
Взаимная связь коллинеарных векторов(деление вектора на вектор). Если вектор а- не нулевой, то всякий вектор b.коллинеарный с ним, можно представить в виде ха, где х- число, получаемое так: оно имеет абсолютное значение |b|:|а|(отношение модулей), оно положительно, если вектор b равно направлен с вектором а и оно отрицательно если b и а противоположно направлены, и равно нулю, если b-нуль-вектор.
