
- •1.Декартова и полярная системы координат на плоскости. Формулы,связующие координаты точки в этих системах. Декартова система координат в пространстве.
- •2.Понятие геометрического вектора. Основные определения связанные с этим понятием (длина вектора, равенство векторов, нуль-вектор, коллинеарные и компланарные векторы, орт вектора).
- •3.Линейниые операции с геометрическими векторами. Законы, которым удовлетворяют эти операции. Разность векторов. Коллинеарные векторы.
- •4.Деление отрезка в заданном отношении.
- •5. Понятие радиус-вектора. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •6.Действия с геометрическими векторами в координатной форме. Признак коллинеарности векторов.
- •7.Скалярное произведение геометрических векторов и его свойства. Признак ортогональности векторов.
- •8.Вычисление скалярного произведения векторов через их координаты, длина вектора, расстояние между двумя точками. Вычисление косинуса угла между двумя точками.
- •9. Направляющие косинусы вектора и их свойства.
- •10.Векторное произведение: определение ,вычисление и свойства.
- •11. Смешанное произведение: определение, вычисление, геометрический смысл.
- •12. Общее уравнение прямой на плоскости и его исследование.
- •13. Уравнение прямой с угловым коэффициентом. Геометрический смысл коэффициентов. Пучок прямых
- •14. Уравнение прямой, проходящей через две заданные точки на плоскости и в пространстве.
- •15.Угол между прямыми. Условия параллельности и перпендикулярности прямых на плоскости.
- •16. Общее уравнение плоскости и его исследование
- •17.Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.
- •18.Различные виды уравнений прямой в пространстве ( каноническое, параметрическое, общее уравнение прямой).
- •23.Определение эллипса и его каноническое уравнение.
- •24. Определение гиперболы и ее каноническое уравнение.
- •25.Определение параболы и ее каноническое уравнение.
- •27.Действия с матрицами (сложение, умножение на скаляр, перемножение матриц, транспонирование матриц). Законы, которым эти действия удовлетворяют.
- •28. Определение определителя и его свойства.
- •29.Определитель, минор и алгебраическое дополнение элемента определителя.
- •30.Обратная матрица. Теорема о существовании и единственности обратной матрицы. Способы вычисления обратной матрицы.
- •31)Определение ранга матрицы. Базисный минор. Вычисление ранга матрицы с помощью элементарных преобразований.
- •32.Система линейных уравнений и ее решение. Различные формы записи системных уравнений. Определение однородной, неоднородной, совместной, несовместной, определенной и неопределенной системы.
- •Векторная форма записи
- •Матричная форма записи
- •33.Матричный способ решения систем линейных уравнений.
- •34.Формулы Крамера.
- •35. Формула Кронекера Капелли.
- •36.Условия определенности и неопределенности систем линейных уравнений.
- •37.Решение систем линейных уравнений методом Гаусса.
- •38)Теорема о совместимости однородной системы линейных уравнений
- •39)Теорема о существовании ненулевых решений однородных линейных уравнений.
- •40)Линейное векторное пространство. Пространство r и линейные операции в этом пространстве.
- •41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
- •42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
- •2) Критерий линейной зависимости векторов
- •43) Базис линейного пространства. Примеры базисов в
- •44. Теорема о единственности разложении вектора линейного пространства по базису.
- •45.Подпространство линейного пространства. Линейная оболочка системы векторов. Сумма и пересечение подпространств. Примеры подпространств.
- •46.Собственные числа и собственные векторы квадратной матрицы и их свойства.
- •47.Характерестическое уравнение , соответствующие квадратной матрице . Теорема о связи собственных чисел матрицы с корнями этого уравнения.
- •48. Линейные операторы. Основные понятия.
- •49. Комплексные числа в алгебраической форме записи .Геометрическое изображение комплексных чисел. Действия с комплексными числами в алгебраической форме записи .Решение алгебраических уравнений
- •50.Тригонометрическая и показательная форма записи комплексных чисел.Модуль и аргумент комплексного числа. Формула Эйлера.
- •51. Действия с комплексными числами. Формула Муавра
41) Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского
1)n-Мерным вектором
называется
упорядоченный набор из n действительных
чисел, записываемых в виде строки
или
столбца
.
Число
называют
i-й координатой вектора
.
Количество координат у вектора
называют
его размерностью. Например, (1; 3; –1; –2;
7) – пятимерный вектор.
Скалярным
произведением двух n-мерных векторов
и
называется
число, обозначаемое
и
равное сумме произведений соответствующих
координат векторов
и
:
.
Скалярное произведение векторов обладает следующими свойствами:
1.
причем
тогда
и только тогда, когда
.
2.
.
3.
4.
.
2) Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы.
Формулировка
Пусть
дано линейное пространство
со
скалярным произведением
.
Пусть
—
норма, порождённая скалярным произведением,
то есть
.
Тогда для любых
имеем:
причём
равенство достигается тогда и только
тогда, когда векторы
и
пропорциональны
(коллинеарны).
Доказательство
Если
то
верно
следующее
Значит
дискриминант
многочлена
неположительный,
то есть
Следовательно,
Если
то
представим скалярное произведение в
тригонометрическом виде
Определим
вектор
Тогда
и
К
скалярному произведению
применим
результат первого пункта доказательства.
3) Углом j между ненулевыми n-мерными векторами и называют угол (от 0 до p), косинус которого равен
42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и не зависимости веторов в
1) Определение. Система векторов x1, x2, … , xn О X называется линейно зависимой, если существуют числа α1, α2, … , αn О R , не все равные нулю (т.е. α12 + α22 + … + αn2 ≠ 0 ), такие, что
α1x1 + α2x2 + … + αnxn = θ.
Если это равенство выполняется только при α1 = α2 = … = αn = 0 , то система векторов называется линейно независимой.
Вместо "линейно зависимая (или независимая) система векторов" можно говорить просто "линейно зависимые (или независимые) векторы".
Теорема Чтобы векторы x1, x2, … , xn О X были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из них являлся линейной комбинацией остальных.
Доказательство см. в книге О.В. Зиминой ``Линейная алгебра и аналитическая геометрия" (Москва, Изд–во МЭИ, 2000, стр.39).
Следствие. Два вектора x1 и x2 линейно зависимы тогда и только тогда, когда x1 = αx2 или x2 = βx1 при некоторых α, β О R , т.е. когда векторы x1 и x2 коллинеарны.
2) Критерий линейной зависимости векторов
Для
того чтобы векторы
(r
> 1) были
линейно зависимы, необходимо и достаточно,
чтобы хотя бы один из этих векторов
являлся линейной комбинацией остальных.
3)
В
векторы
,
и
линейно
независимы, так как уравнение
имеет
только одно, тривиальное, решение.
Векторы
и
являются
линейно зависимыми, так как
а значит
43) Базис линейного пространства. Примеры базисов в
1)Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.
Иными словами, линейно независимая упорядоченная система векторов e1, ..., en образует базис в L если любой вектор x из L может быть представлен в виде
x = С1·e1+С2·e2+ ...+Сn· en.
Конечная
сумма вида
называется
линейной комбинацией элементов
с коэффициентами
.
Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.
Элементы
называются линейно зависимыми, если
существует их нетривиальная линейная
комбинация, равная нулевому элементу
θ.
В противном случае эти элементы называются
линейно независимыми.
Бесконечное подмножество векторов из L называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.
Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество — базисом (базисом Га́меля или линейным базисом). Элементы базиса также называют базисными векторами. Свойства базиса:
Любые n линейно независимых элементов n-мерного пространства образуют базис этого пространства.
Любой
вектор
можно представить (единственным образом)
в виде конечной линейной комбинации
базисных элементов: