Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lineyka.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
806.91 Кб
Скачать

35. Формула Кронекера Капелли.

 Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и   совпадают, т.е. r(A) = r( ) = r.

Для множества М решений системы (5.1) имеются три возможности:

1) M = ∅ (в этом случае система несовместна);

2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);

3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда r(A) = n. При этом число уравнений - не меньше числа неизвестных (m≥n); если m>n, то m-n уравнений являются следствиями остальных. Если 0<r<n, то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:

a11 x1 + a12 x2 +... + a1n xn = b1,

a21 x1 + a22 x2 +... + a2n xn = b2,                                        (5.3)

...     ...     ...     ...     ...     ...

an1 x1 + an1 x2 +... + ann xn = bn.

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда согласно теореме о базисном миноре последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

36.Условия определенности и неопределенности систем линейных уравнений.

Теорема: Если ранг основной матрицы совместной системы равен числу неизвестных, то система является определённой

Теорема: Если ранг основной матрицы совместной системы меньше числа неизвестных, то система является неопределённой.

37.Решение систем линейных уравнений методом Гаусса.

Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса, состоящий в последовательном исключении неизвестных по следующей схеме.Для того чтобы решить систему уравнений

  выписывают расширенную матрицу этой системы  и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали, содержащей элементы   будут располагаться нули.

Разрешается: 1) изменять порядок строк матрицы, что соответствует изменению порядка уравнений; 2) умножать строки на любые отличные от нуля числа, что соответствует умножению соответствующих уравнений на эти числа; 3) прибавлять к любой строке матрицы другую, умноженную на отличное от нуля число, что соответствует прибавлению к одному уравнению системы другого, умноженного на число. С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т. е. такой системы, решение которой совпадает с решением исходной системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]