
- •Примеры здания конечных и бесконечных множеств с
- •Привести примеры подмножеств а) множества натуральных чисел; б) множества целых чисел; в) множества рациональных чисел.
- •Привести примеры результатов выполнения над множествами действий объединения, пересечения, вычитания, дополнения.
- •6. Дать определение сочетаний, размещений, перестановок. Вывести формулы для подсчета числа сочетаний, размещений (с повторениями и без повторений).
- •7. Дать определение бинарного отношения, его проекций и сечений. Описать основные способы представления бинарных отношений.
- •1.Точечно-стрелочный (графический)
- •2. Матричный способ
- •3.Способ сечений.
- •4.Способ перечисления элементов(пар) принадлежащих к бинарному отношению
- •8. Охарактеризовать рефлексивные, симметричные, транзитивные бинарные отношения. Привести примеры отношений, обладающих такими свойствами.
- •10. Охарактеризовать отношение частичного порядка. Привести примеры частично упорядоченных и линейно упорядоченных множеств.
- •11. Дать определение векторного (линейного) пространства над полем действительных чисел. Как выполняются действия над векторами арифметического пространства?
- •19 Дать определение обратной матрицы. Описать метод Гаусса-Жордана вычисления обратной матрицы с помощью элементарных преобразований.
- •29. Описать различные способы задания плоскости в пространстве и соответствующие им уравнения. Описать различные способы задания прямой в пространстве и соответствующие им уравнения.
- •32. Дать определение предела функции в точке и в бесконечности, односторонних пределов (слева и справа) функции в конечной точке. Описать связь между ними.
- •33. Каковы основные типы неопределенностей при вычислении пределов функций и способов их раскрытия?
- •36. Характеристика монотонности функции с помощью производной. Определение интервалов монотонности функций.
- •37. Характеристика выпуклости функции с помощью производной 2ого порядка. Определение интервалов выпуклости и точек перегиба графика функции
- •38. Экстремумы функций и их нахождение с помощью производных. Необходимый признак и достаточные признаки существования экстремума.
- •39.Общая схема исследования функции и построения графика.
- •42. Определение производной функции двух переменных по произвольному направлению. Ее выражение через частные производные. Вектор-градиент функции двух переменных и его свойства.
- •43. Сформулировать необходимое условие существования экстремума функции и объеснить его роль для поиска точек экстремума.
- •44. Дать определение неопределенного интеграла. Сформулировать основные свойства неопределенного интеграла.
- •45.В чем состоит сущность метода интегрирования по частям и замены переменной? Описать основные способы их применения.
- •46. Охарактеризовать понятие определенного интеграла как предела интегральных сумм. Сформулировать простейшие свойства определенного интеграла и дать их геометрическую интерпретацию.
- •47. Охарактеризовать свойства определенного интеграла как функции его верхнего предела. Сформулировать и доказать формулу Ньютона-Лейбница.
- •50. Охарактеризовать различные способы определения вероятности случайного события. Каковы основные свойства функции вероятности?
- •Свойства определённого интеграла
- •51. Сформулировать понятие условной вероятности. Охарактеризовать свойство независимости случайных событий. Указать критерий независимости событий.
- •52. Как вычисляется вероятность произведения а) Независимых в совокупности событий б) Произвольных событий?
- •53. Как вычисляется вероятность суммы а) несовместных событий б) Произвольных событий
- •63 Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.
- •Математическое ожидание.
- •65. Задачи математической статистики. Генеральная и выборочная совокупности. Вариационные ряды. Выборочные числовые характеристики: их свойства и вычисления.
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •66. Графическое представление выборочных распределений: полигон, гистограмма, кумулятивная кривая. Полигон
- •6.1. Распределение домохозяйств по размеру
- •Статистическая таблица
- •Гистограмма
- •Кумулята
65. Задачи математической статистики. Генеральная и выборочная совокупности. Вариационные ряды. Выборочные числовые характеристики: их свойства и вычисления.
Разработка методов регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений, составляет предмет специальной науки – математической статистики.
Все задачи математической статистики касаются вопросов обработки наблюдений над массовыми случайными явлениями, но в зависимости от характера решаемого практического вопроса и от объема имеющегося экспериментального материала эти задачи могут принимать ту или иную форму.
Охарактеризуем вкратце некоторые типичные задачи математической статистики, часто встречаемые на практике.
1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
закономерности, наблюдаемые в массовых случайных явлениях, проявляются тем точнее и отчетливее, чем больше объем статистического материала. При обработке обширных по своему объему статистических данных часто возникает вопрос об определении законов распределения тех или иных случайных величин. Теоретически при достаточном количестве опытов свойственные этим случайным величинам закономерности будут осуществляться сколь угодно точно. На практике нам всегда приходится иметь дело с ограниченным количеством экспериментальных данных; в связи с этим результаты наших наблюдений и их обработки всегда содержат больший или меньший элемент случайности. Возникает вопрос о том, какие черты наблюдаемого явления относятся к постоянным, устойчивым и действительно присущи ему, а какие являются случайными и проявляются в данной серии наблюдений только за счет ограниченного объема экспериментальных данных. Естественно, к методике обработки экспериментальных данных следует предъявить такие требования, чтобы она, по возможности, сохраняла типичные, характерные черты наблюдаемого явления и отбрасывала все несущественное, второстепенное, связанное с недостаточным объемом опытного материала. В связи с этим возникает характерная для математической статистики задача сглаживания или выравнивания статистических данных, представления их в наиболее компактном виде с помощью простых аналитических зависимостей.
2. Задача проверки правдоподобия гипотез
Эта
задача тесно связана с предыдущей; при
решении такого рода задач мы обычно не
располагаем настолько обширным
статистическим материалом, чтобы
выявляющиеся в нем статистические
закономерности были в достаточной мере
свободны от элементов случайности.
Статистический материал может с большим
или меньшим правдоподобием подтверждать
или не подтверждать справедливость
той или иной гипотезы. Например, может
возникнуть такой вопрос: согласуются
ли результаты эксперимента с гипотезой
о том, что данная случайная величина
подчинена закону распределения
?
Другой подобный вопрос: указывает ли
наблюденная в опыте тенденция к
зависимости между двумя случайными
величинами на наличие действительной
объективной зависимости между ними
или же она объясняется случайными
причинами, связанными с недостаточным
объемом наблюдений? Для решения подобных
вопросов математическая статистика
выработала ряд специальных приемов.