
- •Предмет химической термодинамики. Термодинамические системы, виды термодинамических систем, параметры состояния, параметры процесса
- •Первый закон термодинамики. Функции состояния системы и их свойства.
- •Закон Гесса. Следствия из закона Гесса. Тепловые эффекты химических процессов и методы их вычисления. Стандартные энтальпии образования и сгорания веществ.
- •4. Предмет химической кинетики. Скорость химических реакций и факторы ее определяющие. Закон действия масс.
- •5. Влияние температуры на скорость химической реакции:
- •6. Понятия о катализе, катализаторах и ингибиторах. Природа
- •7. Практическое использование гетерогенного катализа на примере производства аммиака или серной кислоты.
- •8. Биологические катализаторы и их особенности. Явление комплементарности.
- •9. Колебательные реакции. Реакция Белоусова-Жаботинского.
- •10. Фазовое равновесие. Правило фаз.
- •11. Понятия об обратимых и необратимых химических процессах, химическом равновесии. Константа равновесия и ее вычисление.
- •12. Принцип Ле Шателье и его использование для управления химико-технологическими процессами.
- •13. Основные законы стехиометрии. Атомные и молекулярные массы, количество вещества, молярная масса и молярный объем, плотность одного газа по отношению к другому, парциальное давление газа.
- •1. Закон сохранения массы веществ:
- •14. Материальный баланс химического процесса. Понятие о выходе.
- •15. Химический эквивалент. Количество вещества эквивалентов, число эквивалентности для различных типов реакций. Закон эквивалентов.
- •16. Периодический закон Менделеева, историческая и современная формулировка. Физический смысл порядкового номера элемента. Явление периодичности и электронная структура атомов
- •17. Квантовые числа и порядок заполнения энергетических уровней и орбиталей в атомах. Правила Клечковского
- •1. Принцип Паули
- •3. Принцип минимума энергии (Правила в.М. Клечковского, 1954)
- •18. Методы моделирования химических связей: метод валентных связей и метод молекулярных орбиталей.
- •19. Количественная оценка полярности связи и полярности молекулы.
- •20. Растворы и их природа. Способы выражения состава растворов (молярная концентрация, массовая доля растворенного вещества).
- •21. Растворы неэлектролитов и их свойства. Закон Генри.
- •22. Законы Рауля. Вычисление температур кипения и замерзания растворов.
- •Повышение температуры кипения растворов
- •23. Осмос. Роль осмоса в природе и технике. Вычисление осмотического давления.
- •24. Теория электролитической диссоциации. Изотонический коэффициент, степень диссоциации, константа диссоциации электролита.
- •2 Ch3cooh ↔ (ch3cooh)2
- •25. Вода как растворитель. Использование воды в технологических процессах. Процесс водоподготовки.
- •26. Ионное произведение воды, водородный показатель. Регулирование водородного показателя в технологических процессах.
- •27. Произведение растворимости. Управление растворимостью веществ.
- •28. Дисперсные системы. Строение, классификация, молекулярно-кинетические и оптические свойства дисперсных систем.
- •29. Строение мицелл золя. Электрокинетические явления (электрофорез и электроосмос) и их практическое использование.
- •34. Электрохимические системы. Межфазный скачек потенциала. Стандартные электродные потенциалы и их измерение.
- •35. Электрохимический ряд напряжений. Уравнение Нернста.
- •36. Гальванические элементы. Вычисление эдс. Современные химические источники тока.
- •37. Электролиз. Количественные расчеты с использованием законов Фарадея.
- •38. Гальванопластика и гальваностегия как примеры технического использования электролиза.
- •39. Коррозия металлов и ее типы. Механизм электрохимической коррозии и методы борьбы с ней.
- •40. Полимеры и олигомеры. Зависимость свойств полимерных материалов от состава и структуры. Использование полимерных материалов в современных технологических процессах. Переработка полимеров.
- •41. Качественный и количественный анализ. Аналитический сигнал. Их роль в технологических процессах.
- •42. Физико-химический анализ. Физический анализ. Их роль в технологических процессах.
37. Электролиз. Количественные расчеты с использованием законов Фарадея.
Электролиз — это совокупность окислительно-восстановительных процессов под действием внешнего источника постоянного тока в специальных устройствах — электролизерах. При электролизе происходит направленное перемещение ионов электролита, окисление на аноде одних из них и восстановление на катоде — других. Однако в этом случае катодом служит отрицательно заряженный электрод, а анодом — положительно заряженный, (при электролизе вещества восстанавливаются на катоде и окисляются на аноде).
В качестве примера рассмотрим электролиз расплава хлорида натрия, диссоциирующего по схеме:
NaCl ↔ Na + +CI-
При пропускании электрического тока через расплав катионы натрия движутся к катоду. Здесь, взаимодействуя с электронами из внешней цепи, они восстанавливаются:
Na+ + е = Na
Анионы хлора перемещаются к аноду, где отдают избыточные электроны и окисляются:
Cl - - е = Cl c последующим образованием молекул газа Cl2
Каждая из этих полуреакций протекает не самопроизвольно, а за счет энергии внешнего источника. Суммарная окислительно-восстановительная реакция описывается уравнением:
Na+ + 2CI- = Na + Cl2
Количественно электролиз описывается двумя законами М. Фарадея (1827):
1. Масса выделившегося на электроде вещества пропорциональна количеству электричества, прошедшего через электролит.
2. Одинаковые количества электричества выделяют на электродах массы веществ, пропорциональные их химическим эквивалентам.
Из второго закона следует, что для выделения одного моля химических эквивалентов вещества следует затратить одно и то же количество электричества, не зависящее ни от каких условий. Измерениями установлено, что это количество составляет 96485 (округленно 96500) кулонов и называется постоянной Фарадея (F). Следовательно:
Умножив обе части уравнения на молярную массу эквивалентов, получим:
где: m — масса вещества, г; I — сила тока, А; t — продолжительность электролиза, с; Э — молярная масса эквивалентов вещества, г/моль экв.
38. Гальванопластика и гальваностегия как примеры технического использования электролиза.
39. Коррозия металлов и ее типы. Механизм электрохимической коррозии и методы борьбы с ней.
Коррозия металлов
Самопроизвольное разрушение металлических и других конструкционных материалов под химическим воздействием окружающей среды называется коррозией (от лат. korrosio — разъедание). Коррозия представляет собой гетерогенный окислительно-восстановительный процесс, протекающий на границе раздела фаз: металл — окружающая среда (газ или жидкость). Металл окисляется, а компоненты окружающей среды восстанавливаются.
По механизму коррозионного процесса различают два основных вида коррозии — химическую и электрохимическую.
Химической коррозией называют разрушение металла в окружающей среде без возникновения электрического тока в системе. В этом случае металл взаимодействует с агрессивными газами (газовая коррозия) или с жидкими неэлектролитами: нефтью, нефтепродуктами и др. (коррозия в неэлектролитах).
Электрохимической коррозией называют разрушение металла в среде электролита с возникновением в системе электрического тока. Электрохимической коррозии подвержены корпуса морских и речных судов, сельскохозяйственная техника, автомобили и т.п.