
- •Предмет химической термодинамики. Термодинамические системы, виды термодинамических систем, параметры состояния, параметры процесса
- •Первый закон термодинамики. Функции состояния системы и их свойства.
- •Закон Гесса. Следствия из закона Гесса. Тепловые эффекты химических процессов и методы их вычисления. Стандартные энтальпии образования и сгорания веществ.
- •4. Предмет химической кинетики. Скорость химических реакций и факторы ее определяющие. Закон действия масс.
- •5. Влияние температуры на скорость химической реакции:
- •6. Понятия о катализе, катализаторах и ингибиторах. Природа
- •7. Практическое использование гетерогенного катализа на примере производства аммиака или серной кислоты.
- •8. Биологические катализаторы и их особенности. Явление комплементарности.
- •9. Колебательные реакции. Реакция Белоусова-Жаботинского.
- •10. Фазовое равновесие. Правило фаз.
- •11. Понятия об обратимых и необратимых химических процессах, химическом равновесии. Константа равновесия и ее вычисление.
- •12. Принцип Ле Шателье и его использование для управления химико-технологическими процессами.
- •13. Основные законы стехиометрии. Атомные и молекулярные массы, количество вещества, молярная масса и молярный объем, плотность одного газа по отношению к другому, парциальное давление газа.
- •1. Закон сохранения массы веществ:
- •14. Материальный баланс химического процесса. Понятие о выходе.
- •15. Химический эквивалент. Количество вещества эквивалентов, число эквивалентности для различных типов реакций. Закон эквивалентов.
- •16. Периодический закон Менделеева, историческая и современная формулировка. Физический смысл порядкового номера элемента. Явление периодичности и электронная структура атомов
- •17. Квантовые числа и порядок заполнения энергетических уровней и орбиталей в атомах. Правила Клечковского
- •1. Принцип Паули
- •3. Принцип минимума энергии (Правила в.М. Клечковского, 1954)
- •18. Методы моделирования химических связей: метод валентных связей и метод молекулярных орбиталей.
- •19. Количественная оценка полярности связи и полярности молекулы.
- •20. Растворы и их природа. Способы выражения состава растворов (молярная концентрация, массовая доля растворенного вещества).
- •21. Растворы неэлектролитов и их свойства. Закон Генри.
- •22. Законы Рауля. Вычисление температур кипения и замерзания растворов.
- •Повышение температуры кипения растворов
- •23. Осмос. Роль осмоса в природе и технике. Вычисление осмотического давления.
- •24. Теория электролитической диссоциации. Изотонический коэффициент, степень диссоциации, константа диссоциации электролита.
- •2 Ch3cooh ↔ (ch3cooh)2
- •25. Вода как растворитель. Использование воды в технологических процессах. Процесс водоподготовки.
- •26. Ионное произведение воды, водородный показатель. Регулирование водородного показателя в технологических процессах.
- •27. Произведение растворимости. Управление растворимостью веществ.
- •28. Дисперсные системы. Строение, классификация, молекулярно-кинетические и оптические свойства дисперсных систем.
- •29. Строение мицелл золя. Электрокинетические явления (электрофорез и электроосмос) и их практическое использование.
- •34. Электрохимические системы. Межфазный скачек потенциала. Стандартные электродные потенциалы и их измерение.
- •35. Электрохимический ряд напряжений. Уравнение Нернста.
- •36. Гальванические элементы. Вычисление эдс. Современные химические источники тока.
- •37. Электролиз. Количественные расчеты с использованием законов Фарадея.
- •38. Гальванопластика и гальваностегия как примеры технического использования электролиза.
- •39. Коррозия металлов и ее типы. Механизм электрохимической коррозии и методы борьбы с ней.
- •40. Полимеры и олигомеры. Зависимость свойств полимерных материалов от состава и структуры. Использование полимерных материалов в современных технологических процессах. Переработка полимеров.
- •41. Качественный и количественный анализ. Аналитический сигнал. Их роль в технологических процессах.
- •42. Физико-химический анализ. Физический анализ. Их роль в технологических процессах.
2 Ch3cooh ↔ (ch3cooh)2
константа диссоциации (Кдисс.):
KatnAnm ↔ nKat+ + mAn-
где Kat – катион (положительно заряженный ион металла),
An – анион (отрицательно заряженный ион кислотного остатка).
25. Вода как растворитель. Использование воды в технологических процессах. Процесс водоподготовки.
Вследствие уникальной способности воды растворять различные вещества, в природе чистой воды, т.е. без примесей, не существует. В одном литре пресной воды, употребляемой нами, содержится до 1 г разных веществ. Эти вещества необходимы для обеспечения нашей жизнедеятельности, а так же жизнедеятельности растений и животных. Дистиллированная вода для них так же вредная, как и слишком минерализованная. Из-за способности воды растворять многие химические вещества, при нынешней экологической обстановке, она стала объектом постоянного и интенсивного загрязнения
Умягчение воды – это процесс удаления солей жесткости – ионов кальция и магния, который важен в водоподготовке для таких отраслей, как пищевая, энергетическая и других. Для выполнения этой операции требуется специальная станция умягчения воды.
Обратный осмос — процесс, в котором с помощью давления принуждают растворитель (обычно вода) проходить черезполупроницаемую мембрану из более концентрированного в менее концентрированный раствор, то есть в обратном для осмосанаправлении
26. Ионное произведение воды, водородный показатель. Регулирование водородного показателя в технологических процессах.
Ио́нное произведе́ние воды́ — произведение концентраций ионов водорода Н+ и ионов гидроксила OH− в воде или в водных растворах, константа автопротолиза воды.
Водородный показатель рН — показатель степени щелочности или кислотности воды. При рН = 7 вода имеет нейтральную реакцию, при рН > 7 — щелочную, а при рН < 7 — кислую.
При повышенном уровне рН происходит выпадение известкового осадка, вода приобретает неприятный запах, способна вызывать раздражение глаз и кожи у купающихся. Если значение рН понижено, металлическим деталям бассейна угрожает коррозия, а материалам и швам плиточного покрытия — разрушение.
27. Произведение растворимости. Управление растворимостью веществ.
При образовании насыщенного водного раствора малорастворимой соли в воде между твердой солью и перешедшими в раствор ионами устанавливается равновесие, например: CaSO4 ↔ Ca2+ + SO42-
Константа равновесия для этого процесса:
Знаменатель дроби – концентрация твердого вещества – постоянная величина, разделив на нее обе части уравнения, получаем:
В насыщенном растворе слабого электролита произведение концентраций его ионов при данной температуре величина постоянная, называемая произведением растворимости (ПР) данного электролита
Если электролит дает при диссоциации несколько одинаковых ионов, то их концентрации возводятся в это число.
Например: PbI2 ↔ Pb2+ + 2I-
Произведение растворимости для сильного электролита требует учета электростатического взаимодействия между находящимися в растворе ионами. Это взаимодействие учитывается введением в формулу для коэффициентов активности i.