
- •20. Коэф. Дарси в случае начального участка.
- •15. Геометрический смысл ур-ия Бернулли.
- •16. Геом. Элементы живого сечения.
- •17. Опыты Рейнольдса.
- •18. Потери напора.
- •19. Коэффициент Дарси при ламинарном напорном движении.
- •29. Определение коэффициентов местных сопротивлений для внезапного и плавного расширения, внезапного и плавного сужения, поворота трубы на
- •26. Графики Никурадзе. Определение коэффициента Дарси опытным путём.
- •27. График Мурина. Определение коэффициента Дарси опытным путем.
- •28. Виды местных сопротивлений. Определение потерь напора на местные сопротивления. Вывод общего уравнения Вейсбаха.
- •30. Явление кавитации. Критическое число кавитации.
- •31. Уравнение Бернулли для потока реальной жидкости
- •32. Дифференциальные уравнения движущейся идеальной жидкости(уравнение л. Эйлера). Вывод уравнений.
- •40. Определение превышения давления в трубопроводе при гидроударе. Фаза и период гидроудара.
- •41. Прямой и непрямой гидроудар. Определение превышения давления.
- •42.Устройство и принцип действия гидротарана.
- •43.Способы борьбы с возникновением гидроудара в трубопроводе.
- •44. Гидравлический расчет трубопроводов. Трубопроводы простые и сложные, короткие и длинные.
- •45). Построение трубопроводной характеристики. Статический и потребный напор.
- •46). Построение трубопроводной характеристики при параллельном и последовательном соединении коротких трубопроводов.
- •47). Расчет длинных трубопроводов. Определение магистрали. Понятие коэф. Расхода. Построение трубопроводной характеристики в случае тупикового трубопровода.
- •49). Основные теории подобия. Геометрическое, кинематическое и динамическое подобие. Критерии подобия: числа Рейнольдса, Вебера, Струхаля, Маха, Фруда, Эйлера, Ньютона.
- •70. Кинематика частицы жидкости в канале центробежного насоса
- •72. Вывод основного уравнения лопастных машин
- •73. Влияние формы лопастей центробежного насоса на напор. Коэффициент закручивания. Коэффициент реактивности.
- •75. Определение гидравлических потерь в лопастном насосе. Действительный напор с учётом потерь.
- •76. Характеристики центробежного лопастного насоса.
- •77. Кавитационные испытание лопастного насоса.
- •78. Гидродинамическое подобие в лопастных насосах.
40. Определение превышения давления в трубопроводе при гидроударе. Фаза и период гидроудара.
Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при резком открытии или закрытии крана или другого устройства, управляемого потоком.
Пусть в конце трубы, по которой движется жидкость со скоростью υ0 , произведено мгновенное закрытие крана (рис. 1, а).
Рис-1 Стадии гидравлического удара
Повышение давления при гидравлическом ударе можно определить по формуле:
Данное
выражение носит название формулы
Жуковского. В нем скорость распространения
ударной волны c определится по формуле:
где r - радиус трубопровода;
E - модуль упругости материала трубы;
δ - толщина стенки трубопровода;
K - объемный модуль упругости.
Е
сли
предположить, что труба имеет абсолютно
жесткие стенки, то скорость ударной
волны определится из выражения:
41. Прямой и непрямой гидроудар. Определение превышения давления.
Формула Жуковского справедлива, когда
tзак-время закрытия крана,t0-фаза гидроудара.
При
этом условии имеет место прямой
гидроудар. При tзак
t0
возникает не прямой гидроудар.
Повышение давления при гидравлическом ударе можно определить по формуле:
Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:
где r - радиус трубопровода;
E - модуль упругости материала трубы;
δ - толщина стенки трубопровода;
K - объемный модуль упругости.
Если предположить, что труба имеет абсолютно жесткие стенки, то скорость ударной волны определится из выражения:
42.Устройство и принцип действия гидротарана.
Гидротараном называют насос основанный на явлении гидравлического удара. Принцип работы насоса такой.
Вода течет по наклонной трубе самотеком и свободно вытекает через клапан 1. Если резко закрыть клапан, то вода, имеющая кинетическую энергию движения, затратит свою энергию на сжатие воды и на расширение стенок трубы. В начальный момент времени повышенное давление возникнет в конце трубы у клапана 1. Затем зона повышенного давления будет распространяться к началу трубы со скроростью С. Через промежуток времени t, равный
скачок уплотнения дойдет до начала трубы, и вся вода в трубе остановится. Начиная с этого момента, сжатая вода в начале трубы расширится. Ведь начало трубы открыто. Давление понизится, и к концу трубы, к клапану 1, побежит скачок пониженного давления. Затем эти процессы будут повторяться. В трубе возникнут затухающие колебания. Мы рассмотрели процессы в трубе с одним клапаном.
В гидротаране стоит клапан 2, который открывается при повышении давления в трубе и поток жидкости по инерции проходит сквозь клапан 2 в воздушный аккумулятор. От воздушного аккумулятора отходит водопровод, который подает воду в накопительную емкость на высоту h2. Давление в аккумуляторе в момент открытия клапана 2 равно давлению столба жидкости в водопроводе. Давление в основной трубе должно быть больше давления столба жидкости в водопроводе. Иначе вода в аккумулятор не пойдет. Скачок давления меньший по величине, чем в рассмотренном выше случае, распространяется к началу трубы с той же скоростью С. Затем с конца трубы к клапану 2 побежит волна разряжения. Клапан 2 закрывается, клапан 1 открывается, и вода, разогнавшись в трубе до номинальной скорости, захлопывает клапан 1, и процесс повторяется.
Достоинства и недостатки гидравлического тарана
Гидравлический таран из-за своей простоты не забыт и по сей день. Говорят, что его использовали в некоторых районах Кавказа, где из-за военной обстановки часты перебои с электричеством. А в последнее время гидротараном стали интересоваться изобретатели, совершенствующие бытовую технику. Они предлагают на его основе миниатюрные устройства, повышающие давление воды, вытекающей из крана. Образующаяся при этом тонкая, но мощная струйка облегчает и ускоряет мытье посуды, позволяет делать массаж десен, улучшить чистку зубов...
"А стоит ли возвращаться к столь архаичной технике? - Не проще ли поставить миниатюрный электрический насос?"
Что же, может быть, и проще. Но электричество опасно, особенно в сочетании с водой. И от греха подальше лучше уж пользоваться чисто гидравлическими устройствами. Да к тому же, быть может, они найдут применение в других областях. Стоит подумать.
Но известные конструкции неудобны во многих местах: необходим слив значительной части воды, протекающей через насос. Значит, требуется место слива ниже расположения насоса. А сам он должен быть ниже уровня воды в источнике. Соблюсти эти условия удается только у плотины или на горной речке. Сгодится и карликовая запруда на малой речке. Но как быть на берегу большой, где кустарную плотину поставить нельзя?