
- •16. Временные задержки в сетях с коммутацией пакетов и коммутации каналов. (96-98) херня
- •17. Модель взаимодействия открытых систем.
- •18. Классификация сетей передачи дискретных сообщений.(139-142)
- •19. Обобщенная структура телекоммуникационной сети.(143-144)
- •20. Классификация сетевых характеристик.(164-165)
- •21. Характеристики задержек пакетов(174-176)
- •22. Характеристики скорости передачи и надежности(177-179)
- •23. Характеристики сети поставщика услуг.(180-182)
- •24. Приложения и качество обслуживания
16. Временные задержки в сетях с коммутацией пакетов и коммутации каналов. (96-98) херня
Количественное сравнение задержек.
Пусть пользователю сети необходимо передать достаточно неравномерный трафик, состоящий из периодов активности и пауз.
Представим также, что он может выбрать, через какую сеть, с коммутацией каналов или пакетов, передавать свой трафик, причем в обеих сетях производительность каналов связи одинаковы. Очевидно, что более эффективной с точки зрения временных затрат для нашего пользователя была бы работа в сети с коммутацией каналов, где ему в единоличное владение предоставляется зарезервированный канал связи. При этом способе все данные поступали бы адресату без задержки. Тот факт, что значительную часть времени зарезервированный канал будет простаивать (во время пауз), нашего пользователя не волнует — ему важно быстро решить собственную задачу.
Если бы пользователь обратился к услугам сети с коммутацией пакетов, то процесс передачи данных оказался бы более медленным, так как его пакеты, вероятно, не раз задерживались бы в очередях, ожидая освобождения необходимых сетевых ресурсов наравне с пакетами других абонентов.
Давайте рассмотрим более детально механизм возникновения задержек при передаче данных в сетях обоих типов. Пусть от конечного узла М отправляется сообщение к конечному узлу N2 (рис. 3.12). На пути передачи данных расположены два коммутатора.
В сети с коммутацией каналов данные после задержки, связанной с установлением канала,
начинают передаваться на стандартной для канала скорости. Время доставки данных Т
адресату равно сумме времени распространения сигнала в канале tprg и времени передачи
сообщения в канал (называемое также временем сериализации) ttrns.
Наличие коммутаторов в сети с коммутацией каналов никак не влияет на суммарное время прохождения данных через сеть.
17. Модель взаимодействия открытых систем.
Семиуровневая модель взаимодействия открытых систем (Open Systems Interconnection, OSI. Она предполагает, что все сетевые приложения можно подразделить на семь уровней, для каждого из которых созданы свои стандарты и общие модели. В результате задача сетевого взаимодействия делиться на меньшие и более легкие задачи.
Модель OSI определяет, во-первых, уровни взаимодействия систем в сетях с коммутацией пакетов, во-вторых, стандартные названия уровней, в-третьих, функции, которые должен выполнять каждый уровень. Модель OSI не содержит описаний реализаций конкретного набора протоколов.
Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В(рис. 4.6.). Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут
нижележащие уровни.
После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней (рис. 4.7).