- •Что представляет собой предмет «естествознание»?
- •Специфика естественнонаучной и гуманитарной сфер культур. Что общее и что различное между ними? Взаимосвязь культур.
- •Характеристика объектов материального мира.
- •7. Что надо понимать под словом «Универсум»?
- •8. Три подхода к ответу на вопрос о возникновении Вселенной и человека.
- •9. Структура и методы естественнонаучного познания (перечислить). Понятие «метод».
- •10. Всеобщие методы (характеристика).
- •11. Научный метод. Что представляет собой наука методология. Общенаучные методы эмпирического познания: научные наблюдения.
- •12. Общенаучные методы эмпирического познания: эксперимент и измерения.
- •13. Общенаучные методы теоретического познания: абстрагирование, идеализация, мысленный эксперимент.
- •14. Общенаучные методы теоретического познания: индукция и дедукция.
- •15. Общенаучные методы теоретического познания: формализация, язык науки.
- •16. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания: анализ и синтез.
- •17. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания: аналогия и моделирование.
- •18. Аксиоматический метод.
- •19. Что характерно для натурфилософского понимания природы.
- •20. Назовите основные принципы атомистического учения о природе, обоснованным Демокритом.
- •21. Что включает в себя космология Аристотеля?
- •22. Каково значение гелиоцентрической картины мира, созданной н. Коперником.
- •25. Дать характеристику роли Галилея и Ньютона в истории естествознания.
- •26. Осветите роль Роберта Бойля в развитии науки 17го века.
- •27. В чем сущность диалектизации естествознания?
- •29. Почему и как происходило вытеснение натурфилософских представлений из естествознания нового времени?
- •30. Каковы причины крушения механической картины мира?
- •32. Как изменились представления о строении атома? Назовите основные положения современной атомистики.
- •34. Основные достижения естествознания.
- •35. Основные концепции неклассического этапа становления естествознания.
- •36. Основные достижения и концепции античного этапа. Картина мира.
- •37. Основные достижения и этапы развития доклассического естествознания.
- •40. Способствует ли естествознание формированию нравственных норм?
- •41. Какова роль рационального естественно-научного познания в формировании мировоззрения?
- •42. Механическая картина мира.
- •44. Основные особенности механики Ньютона.
- •45. Основные параметры движения механики Галилея-Ньютона.
- •46. Принцип относительности Галилея. Основные постулаты специальной теории относительности. Сравнение ньютоновской и релятивистских механик.
- •47. Основные следствия специальной теории относительности. Пространственно-временной интервал. Закон взаимосвязи массы и энергии. Взгляд на пространство и время в сто.
- •48. Элементы общей теории относительности. Роль сто и ото в развитии естествознания.
- •49. Понятие симметрии. Однородность и изотопность, как свойства пространства и времени.
- •50. Связь симметрии и пространства и времени, законов сохранения. Теорема Нетер.
- •51. Принципы суперпозиции полей; принцип неопределенности, принцип дополнительности Бора.
- •52. Динамические и статистические закономерности в природе. Законы сохранения энергии в макроскопических процессах.
- •53. Основы термодинамики. 1 и 2 начало.
- •54. Принцип возрастания энтропии. Гипотезы возникновения и развития Вселенной. Структура Вселенной.
- •55. История возникновения геологического развития Земли. Структура Земли. Современные концепции развития геосферных оболочек.
- •56. Литосфера как абиотическая основа жизни: экологические функции литосферы: ресурсная, геодинамическая, геофизико-химическая.
- •57. Химические процессы, реакционная способность веществ. Катализ.
- •58. Эволюция на химическом уровне.
- •59. Биологический уровень организации материи. Принципы эволюции, воспроизводства и развития живых систем.
- •61. Структурные уровни организации живой материи.
- •62. Процесс биологического обновления.
- •63. Живой организм – открытая термодинамическая система.
- •64. Поведение энтропии открытой сильнонеравновесной живой системы в стационарном состоянии.
- •65. Источник Негэнтропии.
- •66. Автотрофы и гетеротрофы. Их взаимосвязь.
- •67. Метаболизм.
- •68. Процесс получения энергии в живых организмах. В какой форме и где хранится химическая энергия.
- •69. Исходные соединения для фотосинтеза. Продукты реакции.
- •70. Как извлекается энергия из питательных веществ? На что она идет? Как называются эти процессы? Роль дыхания в этих процессах.
- •71. Глобальный круговорот веществ в биосфере. Биогеохимические циклы.
- •72. Первоисточник энергетического потока, проходящего через все пищевые цепочки в биосфере. Финал преобразования этой энергии.
- •73. Переход от неживой материи к живой.
- •74. Функции, структура и состав молекул днк.
- •75. Структура и состав днк:
- •76. Генетический код.
- •78. Состав клетки. Различия растительной и животной клетки.
- •79. Группы, на которые делятся все организмы в зависимости от типа клеток. Стволовые клетки. Клетка как живой организм.
- •80. Какие физические поля могут существовать в организме?
- •81. Сущность возникновения эмп в организме человека.
- •82. Биопотенциал.
70. Как извлекается энергия из питательных веществ? На что она идет? Как называются эти процессы? Роль дыхания в этих процессах.
Питательные вещества.
Жизнедеятельность любого организма, в том числе и человека, невозможна без постоянного поступления энергии из внешней среды. Такой энергией для человека является потребляемая пища, содержащая питательные вещества — белки, жиры и углеводы.
Питательные вещества — это жизненно необходимые составные части пищи, используемые организмом как пластический материал для построения живого вещества клеток и служащие источником энергии, необходимой для его жизнедеятельности. Организму нужны также минеральные соли, вода, витамины. Все эти вещества также поступают с пищей. Но лишь вода, минеральные соли и витамины усваиваются организмом в том виде, в каком они находятся в пище. Белки, жиры и углеводы, являясь высокомолекулярными соединениями, не могут всасываться в пищеварительном тракте и усваиваться организмом без предварительного расщепления до более простых соединений.
Пищеварение — это совокупность процессов, обеспечивающих механическое измельчение пищи, химическое расщепление макромолекул питательных веществ на компоненты, пригодные для всасывания и участия в обмене веществ. Таким образом, функциями пищеварительной системы являются:
Секреторная (заключается в образовании железистыми клетками пищеварительных соков, содержащих ферменты, которые расщепляют белки, жиры и углеводы);
Всасывательная (обеспечивает поступление переваренных органических веществ, солей, витаминов и воды во внутреннюю среду организма);
Моторная (обеспечивает жевание, глотание, передвижение пищи по пищеварительному тракту и удаление непереваренных остатков).
Главнейшая роль в химической переработке пищи принадлежит ферментам. Они вырабатываются в слюнных железах, желудке, поджелудочной железе, кишечнике
Ферменты обладают высокой активностью, что позволяет расщеплять большое количество органических веществ.
Роль дыхания.
71. Глобальный круговорот веществ в биосфере. Биогеохимические циклы.
Глобальный круговорот веществ складывается из отдельных круговоротов (воды, химических элементов), к которым подключаются грандиозные перемещения воздушных масс, тектонические процессы, обусловленные вулканической деятельностью и движением океанических плит.
Круговорот веществ возможен только на основе постоянного притока солнечной энергии и осуществляется при участии живого вещества. Поступая в организмы из окружающей среды, различные элементы вовлекаются в процессы клеточного метаболизма, затем возвращаются в среду и вновь используются организмами. Благодаря этому биосфера функционирует как целостная, саморегулирующаяся, сохраняющая постоянство система.
Основными элементами глобального круговорота являются углерод, водород, кислород, азот, фосфор, сера. Круговороты этих и других элементов называют биогеохимическими циклами. В ходе таких циклов большинство элементов проходят через живое вещество огромное число раз.
Биохимические циклы:
Химические элементы циркулируют в биосфере характерными путями из внешней среды в организм и снова во внешнюю среду. Процессы движения химических элементов, которые происходят с участием живого вещества, называются биогеохимическими циклами. Движение необходимых для жизни элементов и неорганических соединений можно назвать круговоротом элементов питания.
Круговорот углерода в природе
Углекислый газ поступает в атмосферу за счет дыхания всех организмов. Второй его источник - выделение по трещинам земной коры из осадочных пород благодаря химическим процессам. С увеличением содержания СО2 в атмосфере связана глобальная экологическая проблема - потепление климата.
Круговорот воды в природе
Часть этого круговорота осуществляется за счет энергии Солнца, в других частях круговорота энергия освобождается и может быть использована экосистемами и гидроэлектростанциями. Около трети энергии Солнца, поступающей к Земле, затрачивается на круговорот воды.
Круговорот кислорода в природе
Атмосферный кислород накоплен за счет фотосинтеза. Единственный источник абиогенного поступления свободного кислорода - фотолиз воды в верхних слоях атмосферы. В природе существует два фундаментальных процесса, противоположных друг другу, - это фотосинтез у растений и дыхание. Количество молекул O2, которые выделяют зеленые растения, пропорционально количеству связывающихся молекул СО2. Кислород, выделяющийся во время фотосинтеза, идет на дыхание живых существ и на окисление углерода при минерализации органических соединений.
