Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпионки =).docx
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
603.52 Кб
Скачать

Несовершенство скважин. Влияние несовершенства на дебит скважины. Формула дебита несовершенной скважины.

В теории фильтрации различают три вида несовершенства скважины:

-скважина гидродинамически несовершенная по степени вскрытия пласта – это скважина с открытым забоем, вскрывшая пласт не на всю толщину;

-скважина гидродинамически несовершенная по характеру вскрытия пласта – это скважина, вскрывшая пласт на всю толщину, но сообщающаяся с пластом через систему перфорационных отверстий или специальные фильтры;

-скважина гидродинамически несовершенная как по степени, так и по характеру вскрытия.

Скважина, несовершенная по характеру вскрытия, сообщается с пластом через систему перфорационных отверстий. Вблизи отверстий форма потока радиально-сферическая. Суммарная площадь фильтрации определяется суммой сечений отверстий, что значительно меньше поверхности вскрытого пласта. Это приводит к возникновению дополнительных сопротивлений в призабойной зоне пласта. Исследования показывают, что за пределами цилиндрической поверхности радиуса R0 = rc+ линии тока практически параллельны, и поток становится плоскорадиальным. Если скважина гидродинамически несовершенна по степени вскрытия. То линии тока будут параллельны за пределами цилиндрической поверхности радиуса R01,5h. В зоне, прилегающей к скважине, поток жидкости вблизи кровли пласта будет плоскорадиальным, а в остальной части – радиально-сферическим. Формулы притока жидкости к несовершенным скважинам Дебит скважины, несовершенной по степени вскрытия, можно найти по формуле Н.К.Гиринского, если считать, что скважина вскрыла пласт неограниченной толщины на глубину b: . (5.1)

Для пласта конечной толщины h М.Маскет предложил формулу, при условии, что : , (5.2)где .Здесь - относительное вскрытие пласта. Иногда для расчета дебита скважины, несовершенной по степени вскрытия, используется более простая формула, чем формула М.Маскета, - формула И.Козени:

. (5.3)Для дебита скважины, вскрывшей пласт на малую глубину (bh), существует формула И.А.Чарного:

.Принимая R0=1,5h, окончательно имеем: . (5.4)Дебит скважины, сочетающей оба вида несовершенства, можно определить по формуле: , (5.5)где С=С12 – дополнительное фильтрационное сопротивление, вызванное несовершенством скважины по степени вскрытия (С1) и по характеру вскрытия (С2).С – величина безразмерная.Значения С1 и С2 находятся по графикам В.И.Щурова.Формулу (5.5) можно записать в виде:

,где - приведенный радиус скважины, т.е. радиус такой гидродинамически совершенной скважины, дебит которой равен дебиту данной несовершенной скважины. .Значения приведенного радиуса обычно составляют (10-210-4) м. Иногда гидродинамическое несовершенство скважины учитывается при помощи коэффициента совершенства : ,где Q – дебит несовершенной скважины; Qсов – дебит совершенной скважины в тех же условиях.

Несовершенство по качеству вскрытия В практике разработки выделяют еще один вид несовершенства – по качеству вскрытия, когда проницаемость призабойной зоны скважины (ПЗС) снижена по сравнению с естественной проницаемостью пласта. С учетом данного вида несовершенства формула Дюпюи приобретает вид:

, (5.6)

где S=S1+S2. Здесь S1 – коэффициент, учитывающий дополнительные фильтрационные сопротивления в ПЗС из-за несовершенства скважины по качеству первичного вскрытия (загрязнение пласта фильтратом бурового раствора, цементным раствором и т.п.); S2 - коэффициент, учитывающий дополнительные фильтрационные сопротивления в ПЗС из-за несовершенства скважины по качеству вторичного вскрытия (возникновение зоны кольматации вокруг перфорационных каналов). Коэффициент совершенства в этом случае равен: . (5.7)Величины C и особенно S трудно поддаются определению. Однако знаменатель формулы (5.7) можно определить с помощью промысловых гидродинамических исследований скважин.

Опишите технологию определения положения динамического уровня жидкости в скважине. Цель и назначение. Уровень жидкости, который устанавливается в работающей скважине при условии, что на него действует атмосферное давление (межтрубное пространство открыто), называется динамическим уровнем. При герметизированном затрубном пространстве динамическое давление будет равно сумме гидростатического давления столба жидкости от уровня до забоя и давления газа, действующего на уровень. Высота столба жидкости измеряется по вертикали. Поэтому в наклонных скважинах при вычислении гидростатических давлений должна делаться соответствующая поправка на кривизну скважины. Эхолот Эхолот работает следующим образом. В межтрубное пространство посылается звуковой импульс, который отражается от уровня жидкости, возвращается к устью скважины и улавливается микрофоном, соединенным через усилитель с регистрирующим устройством, записывающим все сигналы на бумажной ленте в виде диаграммы. Бумажная лента движется с помощью лентопротяжного механизма с постоянной скоростью. Измеряя расстояние между двумя пиками диаграммы, соответствующими начальному импульсу и отраженному от уровня, можно определить глубину этого уровня. Поскольку звуковой сигнал проходит двойное расстояние от устья до уровня и обратно, то, если известна скорость распространения звуковой волны в газовой среде межтрубного пространства, глубина уровня может быть найдена из простого соотношения: , S - глубина уровня; t = l / а - время от момента подачи импульса до прихода отраженного сигнала, который проходит за это время путь 2S; v - скорость звука в газовой среде межтрубного пространства; l - расстояние между двумя пиками диаграммы на бумажной ленте; а - скорость движения бумажной ленты.Такой метод определения уровня жидкости имеет ряд недостатков.Скорость звука v в межтрубном пространстве зависит от давления, температуры и плотности газа, заполняющего это пространство. Погрешность в определении v непосредственно влияет на определяемую величину уровня 5.При измерении нескольких значений Si, и вычислении по ним величин ΔSi, соответствующих нескольким режимам отбора жидкости в той же скважине, погрешности уменьшаются, так как систематическая ошибка в величине v одинаково отразится на всех измеряемых значениях S.Чтобы исключить ошибки, связанные с определением скорости звука в межтрубном пространстве, на колонне НК.Т устанавливают репер - утолщенную муфту, на 50 - 60% перекрывающую межтрубное пространство. Глубина установки этого репера S0 заранее известна. В этом случае на эхограмме получаются три пика: первый соответствует моменту подачи импульса на устье, второй - отраженному сигналу от репера и третий - отраженному сигналу от уровня. Очевидно, что расстояния между пиками эхограммы пропорциональны глубинам установки репера S0 и уровня S. Из пропорции

находим Таким образом, установка репера исключает необходимость определения скорости звука в кольцевом пространстве. Для большей точности репер устанавливают вблизи уровня жидкости.

Рис. 10.11 Типичные эхограммы, снятые с помощью трехканального эхолота

Современные высокочувствительные эхолоты не требуют установки репера, так как фиксируют на бумажной ленте сигналы, отраженные от каждой муфты колонны НКТ. В этом случае глубина измеряемого уровня определяется подсчетом по эхограмме числа пиков до сигнала, соответствующего уровню жидкости, и умножением числа пиков на длину одной трубы. Для создания звукового импульса и улавливания отраженных сигналов имеется «хлопушка» - специальный короткий патрубок, присоединяемый к фланцу задвижки межтрубного пространства, с ударником, производящим выстрел маломощного порохового заряда. Кроме того, в хлопушке или ее боковом отводе имеется кварцевый чувствительный микрофон. В некоторых конструкциях эхолотов вместо микрофона используют термофоны. Микрофон превращает звуковые сигналы в электрические, поступающие в усилитель. В современных эхолотах имеется электронный усилитель с трехканальным фильтром для глушения помехи и выделения измеряемого сигнала. Усилитель питается от батареи постоянного тока и не нуждается в наличии на скважине осветительной электролинии для своего питания. Усилитель имеет регулятор чувствительности и лентопротяжный механизм для обеспечения постоянной скорости движения бумажной ленты.Три канала, устанавливаемых поворотом трехпозиционного переключателя, обеспечивают выделение (с помощью электрических фильтров) сигналов, отраженных от верхних муфт, выделение сигналов от муфт, находящихся на большой глубине, и выделение сигнала от уровня жидкости при больших глубинах (рис. 10.11).Эхолот - переносной прибор, собран в небольшом ящике-футляре. Хлопушка присоединяется без разрядки газа из межтрубного пространства и допускает измерения при давлениях до 2,5 МПа.Наличие вспененной жидкости в межтрубном пространстве скважины затрудняет получение четкого отраженного сигнала от уровня и является общим недостатком измерения эхолотом. Поэтому перед измерением очень важно не производить разрядки газа из межтрубного пространства во избежание вспенивания. Однако это не всегда возможно, так как некоторые конструкции хлопушек предусматривают ее соединение через специальное отверстие в устьевой планшайбе, закрываемое винтовой пробкой. Необходимо также отметить, что для определения по уровню забойного давления, соответствующего данному отбору жидкости, надо знать среднюю плотность столба жидкости от уровня до забоя. Определение этой плотности, зависящей от обводненности и газосодержания столба жидкости, затруднительно. В промысловой практике нашли применение так называемые волномеры, представляющие собой те же эхолоты, но вместо звукового импульса в межтрубное пространство посылается импульс давления газа. Этот импульс создается либо кратковременным впуском газа из баллона высокого давления, либо выпуском газа из межтрубного пространства с помощью специального отсекателя, присоединяемого к межтрубной задвижке. Отсекатель состоит из заглушенного с одной стороны патрубка, имеющего на боковой поверхности одно или несколько отверстий. Эти отверстия перекрыты скользящей по поверхности патрубка специальной муфтой с отверстиями. При кратковременном перемещении этой муфты отверстия в патрубке и муфте на короткий момент времени совмещаются и таким образом создается импульс давления, зависящий от давления в межтрубном пространстве и от скорости перемещения муфты. Поэтому условия измерения уровня получаются нестандартизованными, а это осложняет создание регистрирующего устройства, которое могло бы избирательно регистрировать нужный отраженный сигнал с достаточной чувствительностью. Определение положения динамического уровня жидкости в скважине необходимо для определения глубины подвески насоса.

С хема ус-ки погружного насоса. Типичная харак-ка пцн. Способы защиты скважинного штангового насоса от песка. (ПЦЭН) - это многоступенчатые центробежные насосы с числом ступеней в одном блоке до 120, приводимые во вращение погружным электродвигателем специальной конструкции (ПЭД). Электродвигатель питается с поверхности электроэнергией, подводимой по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. ПЦЭН опускается в скважину под расчетный динамический уровень обычно на 150 - 300 м. Жидкость подается по НКТ, к внешней стороне которых прикреплен специальными поясками электрокабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка ПЦЭН (рис. 11.1) включает маслозаполненный электродвигатель ПЭД 1; звено гидрозащиты или протектор 2; приемную сетку насоса для забора жидкости 3; многоступенчатый центробежный насос ПЦЭН 4; НКТ 5; бронированный трехжильный электрокабель 6; пояски для крепления кабеля к НКТ 7; устьевую арматуру 8; барабан для намотки кабеля при спуско-подъемных работах и хранения некоторого запаса кабеля 9; трансформатор или автотрансформатор 10; станцию управления с автоматикой 11 и компенсатор 12. Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов

имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции ПЦЭН соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и покидает насос с напором, равным внешнему гидравлическому сопротивлению. УПЦЭН отличаются малой металлоемкостью, широким диапазоном рабочих характеристик, как по напору, так и по расходу, достаточно высоким к. п. д., возможностью откачки больших количеств жидкости и большим межремонтным периодом. Следует напомнить, что средняя по России подача по жидкости одной УПЦЭН составляет 114,7 т/сут, а УШСН - 14,1 т/сут. Все насосы делятся на две основные группы; обычного и износостойкого исполнения. Насосы износостойкого исполнения предназначены для работы в скважинах, в продукции которых имеется небольшое количество песка и других механических примесей (до 1 % по массе). По поперечным размерам все насосы делятся на 3 условные группы: 5(92 мм); 5А(103 мм) и 6(114 мм), что означает номинальный диаметр обсадной колонны, (в дюймах), в которую может быть спущен данный насос.

Р ис. 11.2. Типичная характеристика погружного центробежного насоса с подачей 40 м3/сут (по воде) и напором 950 м. ЭЦН5А-360-600 означает насос группы 5А с подачей 360 м3/сут и напором 600 м. В шифре насосов износостойкого исполнения имеется буква И, означающая износостойкость. В них рабочие колеса изготовляются не из металла, а из полиамидной смолы (П-68). В корпусе насоса примерно через каждые 20 ступеней устанавливаются промежуточные резино-металлические центрирующие вал подшипники, в результате чего насос износостойкого исполнения имеет меньше ступеней и соответственно напор. Торцовые опоры рабочих колес не чугунные, а в виде запрессованных колец из закаленной стали 40Х. Вместо текстолитовых опорных шайб между рабочими колесами и направляющими аппаратами применяются шайбы из маслостойкой резины. Все типы насосов имеют паспортную рабочую характеристику в виде кривых зависимостей Н(Q) (напор, подача), η(Q) (к. п. д., подача), N(Q) (потребляемая мощность, подача). Обычно эти зависимости даются в диапазоне рабочих значений расходов или в несколько большем интервале (рис. 11.2). Всякий центробежный насос, в том числе и ПЦЭН, может работать при закрытой выкидной задвижке (точка А: Q = 0; Н = Нmax) и без противодавления на выкиде (точка В: Q = Qmax; H = 0). Поскольку полезная работа насоса пропорциональна произведению подачи на напор, то для этих двух крайних режимов работы насоса полезная работа будет равна нулю, а следовательно, и к. п. д. будет равен нулю. При определенном соотношении (Q и Н), обусловленном минимальными внутренними потерями насоса, к. п. д. достигает максимального значения, равного примерно 0,5 - 0,6. Обычно насосы с малой подачей и малым диаметром рабочих колес, а также с большим числом ступеней имеют пониженный к. п. д. Подача и напор, соответствующие максимальному к. п. д., называются оптимальным режимом работы насоса. Зависимость η(Q) около своего максимума уменьшается плавно, поэтому вполне допустима работа ПЦЭН при режимах, отличающихся от оптимального в ту и другую сторону на некоторую величину. Пределы этих отклонений завесят от конкретной характеристики ПЦЭН и должны соответствовать разумному снижению к. п. Д. насоса (на 3 - 5%). Это обусловливает целую область возможных режимов работы ПЦЭН, которая называется рекомендованной областью (см. рис. 11.2, штриховка). Подбор насоса к скважинам по существу сводится к выбору такого типоразмера ПЦЭН, чтобы он, будучи спущен в скважину, работал в условиях оптимального или рекомендованного режима при откачке заданного дебита скважины с данной глубины. Напор, который может преодолеть насос, прямо пропорционален числу ступеней. Развиваемый одной ступенью при оптимальном режиме работы, он зависит, в частности, от размеров рабочего колеса, которые зависят в свою очередь от радиальных габаритов насоса.

Ф актором, осложняющим работу штанговых насосных установок, является присутствие в откачиваемой жидкости мелкого песка и иной абразивной взвеси. Песок, попадая в насос, разрушает пригнанные поверхности деталей насоса, увеличивает утечки жидкости через клапаны и зазор между цилиндром и плунжером, а иногда вызывает заклинивание плунжера и обрывы штанг. Такие явления наблюдались в неглубоких скважинах нефтяных районов южной Туркмении и Северного Кавказа. Межремонтный период таких скважин составляет несколько недель, после чего необходимы извлечение подземного оборудования и замена насоса. Для борьбы с вредным влиянием песка применяются различные меры, например, крепление призабойной зоны скважины различными смолами, образующими после их кристаллизации на забое прочную проницаемую пористую среду. Для тех же целей используют различные фильтры, а также приспособления, устанавливаемые перед приемным патрубком насоса, называемые песочными якорями. В песочном якоре (рис. 10.18, а) жидкость изменяет направление движения на 180°, песок отделяется и скапливается в специальном кармане в нижней части якоря. При заполнении кармана песком якорь извлекают на поверхность и очищают. Условием эффективной работы песочного якоря является существование в якоре скорости восходящего потока жидкости, меньшей скорости оседания частиц песка. По опытным данным эффективность обращенного якоря (рис. 10.18, б) выше прямого, так как в нем благодаря насадке создается повышенная скорость потока с песком, направленная вниз. В результате условия оседания песка улучшаются. Наряду с песочными якорями для борьбы с вредным влиянием песка применяют различные фильтры, привинчиваемые к приемному клапану насоса. При сильном пескопроявлении и для предотвращения оседания песка на забое иногда применяют подлив жидкости в межтрубное пространство скважины. С этой целью часть откачиваемой из скважины жидкости сбрасывают в межтрубное пространство, насос спускают до забоя и таким образом создают повышенную скорость восходящего потока жидкости, при которой песок не оседает на забой и не образует песчаных пробок. Иногда с той же целью устанавливают на поверхности насос, от которого по трубопроводам подливают жидкость в несколько скважин, работа которых осложнена песком. Рис 10.18. Принципиальная схема песочного якоря

Основные достоинства и недостатки УЭЦН. Широкое применение скважинных центробежных насосов с электроприводом обусловлено многими факторами. При больших отборах жидкости из скважины установки ЭЦН наиболее экономичные и наименее трудоемки при обслуживании, по сравнению с компрессорной добычей и подъемом жидкости насосами других типов. При больших подачах энергетические затраты на установку относительно невелики. Обслуживание установок ЭЦН просто, так ака на поверхности размещаются только станция управления и трансформатор, не требующие постоянного ухода. Монтаж оборудования ЭЦН прост, так как станция управления и трансформатор не нуждаются в устройстве фундаментов. Эти два узла установки ЭЦН размещают обычно в легкой будке. Центробежные насосы получили широкое распространение, поскольку они дают большой напор при заданных подачах жидкости и ограниченных габаритах насоса.  Преимущества: Скважины, оборудованные установками погружных центробежных электронасосов, выгодно отличаются от скважин, оборудованных глубиннонасосными установками. Здесь на поверхности нет механизмов с движущимися частями, отсутствуют громадные металлоемкие станки - качалки и массивные фундаменты, необходимые для их установки. Применение такого оборудования позволяет вводить скважины в эксплуатацию сразу же после бурения в любой период года, даже в самые суровые зимние месяцы, без больших затрат времени и средств на сооружение фундаментов и монтажа тяжелого оборудования. При эксплуатации скважин ЭЦН устье легко поддается герметизации, что позволяет осуществлять сбор и отвод попутного газа. Для установок ЭЦН характерно отсутствие промежуточного звена насосных штанг, благодаря чему повышается межремонтный период работы скважин. Расширяется область применения насосной добычи из глубоких скважин и форсированного отбора жидкости из сильно обводненных скважин, а также наклонно-направленных скважин. Недостатки:  К недостаткам бесштанговых насосных установок можно отнести: сложный ремонт скважины при падении труб, иногда не приводящий к результату; сложное оборудование (шкаф ШГС), требующее электрика высокой квалификации.  На больших оборотах нефть смешивается с водой, приходится тратить большое количество энергии, чтобы отделить нефть от воды. ЭЦН могут применяться также для межпластовой закачки воды и для поддержания пластовых давлений в нефтяных залежах.  Не рекомендуется применять погружные электроцентробежные насосы в скважинах: а)в жидкостях, в которых содержится значительное количество песка, вызывающего быстрый износ рабочих деталей насоса;  б)с большим количеством газа, снижающего производительность насоса. Содержание свободного газа у первой ступени насоса не должна превышать 2% от объема перекачивающей жидкости. Повышение содержания свободного газа приводит к снижению напора, подачи, коэффициента полезного действия, а работа насоса становится неустойчивой.

Опр. глубины подвески пцэн. Глубина подвески насоса определяется: 1) глубиной динамич. Ур-я жид. в скв. Нд при отборе заданного колич-ва жид.; 2) глубиной погружения ПЦЭН под динамич. Ур-нь Нп, минимально необходимой для обеспечения нормальной работы насоса; 3) противодав. на устье скв. Ру, кот. необходимо преодолеть; 4) потерями напора на преодоление сил трения в НКТ при движении потока hтр; 5) работой выделяющегося из жид. г. Нг, уменьшающего необходимый суммарный напор. Т.о., можно записать . (11.1) Глубина динамич. Ур-я опр-ся из ур-я притока или по индикаторной кривой. Если ур-е притока известно ,то, решая его отн-но дав. на забое Рс и приведя это дав. в столб жид. получим (11.2) или , , (11.3)ρср - ср. плотность столба жид. в скв. от забоя до уровня; h - высота ст. жид. от забоя до динамич. Ур-я по вертикали. Вычитая h из глубины скв. Hc, получим глубину динамич. Ур-я Hд от устья . (11.4) Если скв. наклонны и φ1 - ср. угол наклона относительно вертикали на уч-ке от забоя до уровня, а φ2 - ср. угол наклона отн-но вертикали на уч-ке от ур-я до устья, то необходимо внести поправки на кривизну скв. . (11.5) Здесь Нс - глубина скважины, измеренная вдоль ее оси. Величина Ру/ρg есть устьевое дав., выраженное в метрах ст. жид. плотностью ρ. Если продукция скв. обводнена и n - доля воды в единице объема продукции скв., то плотность жид. опр-ся как средневзвешенная . (11.6) Величина Ру зависит от системы нефтегазосбора, удаленности данной скважины от сепарационных пунктов и в некоторых случаях может составлять значительную величину. , (11.7) где С - линейная скорость потока, м/с, . (11.8) Здесь Qн и Qв - дебит товарной н. и в., м3/сут; bн и bв - объемные коэф. н. и в. для ср. термодинамических условий, существующих в НКТ; f - площадь сечения нкт. Как правило, hтр - малая величина и составляет примерно 20 - 40 м. Величину НГ можно определить достаточно точно. Однако такой расчет сложный и, как правило, проводится на ЭВМ.

Определение подачи по графику. Исходя из этого определяют пло­щадь внутреннего канала НКТ, м2, , (3.1)и внутренний диаметр, см, , (3.2)где Q - дебит скважины, м3/сут; Vср - выбранная величина ср. ск-ти. Исходя из ближайшего внутреннего диаметра выбирается стандартный диаметр НКТ. Если разница получается существенной, то корректируется Vср. , (3.2') Fвн - площадь внутр. канала выбранных стандартных НКТ. Необходимый напор опр-ся из ур-я условной характеристики скв.: , (3.3) hст – статич. Ур-нь жид. в скв., м; Δh - депрессия, м; hтр - потери напора на трение в трубах; hг - разность геодезических отметок сепаратора и устья скв.; hc - потери напора в сепараторе. Депрессия опр-ся при показателе степени ур-я притока, равном единице: , (3.4)

где К – коэф. продуктивности скв., м3/сут·МПа; ρж - плотность жид., кг/м3; g = 9,81 м/с2. Потери напора на трение в трубах, м, опр-ся по ф-ле , (3.5) где L глубина спуска насоса, м, ; (3.6) h - глубина погружения насоса под динамич. Ур-нь; l - расстояние от скв. до сепаратора, м; λ - коэф. гидравлич. Сопр-ия, λ определяют в зависимости от числа Re и относительной гладкости труб Ks:

, (3.7) где ν - кинематическая вязкость жидкости, м2/с; , (3.8) Δ - шероховатость стенок труб, принимаемая для неза­грязненных отложениями солей и парафина труб равной 0,1 мм. Другим способом определения λ является вычисление ее по числу Рейнольдса, независимо от шероховатости: , если Re < 2300 (3.9) , если Re > 2300 (3.10) Потери напора на преодоление дав. в сепараторе , (3.11) Pc - избыточное дав. в сепараторе. Подбор насоса для заданной подачи, необходимого напора и диаметра эксплуатационной колонны скважины производят по характеристикам погружных центробежных насосов. При этом необходимо иметь в виду, что в соответ­ствии с характеристикой ЭЦН напор насоса увеличивается при уменьшении подачи, а КПД имеет ярко выраженный мак­симум. Поскольку характеристики на конкретные типоразмеры ЭЦН часто отсутствуют, то целесообразно по заданным трем точкам рабочей области построить участок характеристики для точного определения напора ЭЦН. Учитывая, что табличные характеристики построены для воды, следует изменить табличные значения напора в соответствии с плотностью реальной жидкости по соотношению , (3.12) Нв - табличное значение напора ЭЦН; ρв - плотность пресной воды; ρж - плотность реальной жид.