Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
100
Добавлен:
22.12.2019
Размер:
1.33 Mб
Скачать

Утомление мышц.

Утомление – временное снижение работоспособности, наступающее в процессе выполнения мышечной работы и исчезающее после отдыха. Причины утомления:

1. Накопление продуктов обмена (молочная кислота) в мышцах, что ведет к угнетению генерации потенциала действия.

2. Кислородное голодание, т.е. к мышце не успевает доставляться кислород.

3. Истощение энергии.

4. Центрально-нервная теория утомления. По этой теории утомление нервных клеток наступает быстрее, чем мышц.

5. Утомление синапсов, через которые импульсы передаются к мышцам.

В целом нет ни первой, ни последней причины. Все они действуют одновременно.

Изучая влияние СНС на скелетную мышцу лягушки А.Г. Гинецинским было установлено, что если на мышцу утомленную до полной невозможности сокращаться подействовать стимуляцией симпатических волокон которые иннервируют эту мышцу, а затем начать стимулировать ее через моторные нервы сокращения восстанавливались. Выяснилось, что эти изменения связанны с тем, что под влиянием СНС в мышце происходит укорочение хроноксии, укорачивается время передачи возбуждения, повышается чувствительность к ацетилхолину, повышается потребление кислорода. Данное явление получило название феномена Орбели-Геницинского.

Тренировка. Гипертрофия и атрофия мышц

Тренировка - система физических упражнений и режим их реализации. Ее целью является увеличение долговременности и объема выполняемой мышечной работы. Это достигается за счет увеличения в организме массы мышечной ткани, перестройки обмена веществ в мышце, изменения в системах кровоснабжения мышц, дыхания, нервной регуляции мышечной деятельности. Метаболические изменения в мышце позволяют выполнять работу в условиях сниженного поступления к мышце кислорода (в анаэробных условиях), увеличиваются кислородная емкость крови, минутный объем сердечного выброса, минутный объем дыхания, скорость кровотока.

Систематические тренировки приводят к гипертрофии мышцы.

Выделяют два вида гипертрофии:

1. Миофибриллярный тип. Развивается при статической работе (поднятие тяжести). При этом типе гипертрофии увеличивается число миофибрилл и значительно увеличивается сила мышцы. Например, тяжелоатлеты.

2. Саркоплазматический тип – увеличение объема саркоплазмы (гликогена, креатининфосфата, миоглобина, числа капилляров). При этом типе гипертрофии развивается выносливость. Например, бегуны на длинной дистанции.

Атрофия мышцы развивается при ее бездеятельности. Атрофия способствует постельный режим, перерезка сухожилий, заболевания нервной системы, гипсовая повязка.

Физиологические особенности гладких мышц. Строение гладкой мышцы

По структуре гладкая мышца отличается от поперечнополосатой скелетной мышцы и мышцы сердца. Она состоит из клеток веретенообразной формы длиной от 10 до 500 мкм, шириной 5-10 мкм, содержащих одно ядро. Гладкомышечные клетки лежат в виде параллельно ориентированных пучков, расстояние между ними заполнено коллагеновыми и эластическими волокнами, фибробластами, питающими магистралями. Мембраны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуждения с клетки на клетку. Кроме того плазматическая мембрана гладкомышечной клетки имеет особые впячивания - кавеолы, благодаря которым площадь мембраны увеличивается на 70%. Снаружи плазматическая мембрана покрыта базальной мембраной. Комплекс базальной и плазматической мембраны называют сарколеммой. В гладкой мышцы отсутствуют саркомеры. Основу сократительного аппарата составляют миозиновые и актиновые миофиламенты. В ГМК актиновых миофиламентов намного больше, чем в поперечно-полосатом мышечном волокне. Соотношение актин/миозин = 5:1.

Толстые и тонкие миофиламеты распылены по всей саркоплазме гладкого миоцита и не имеют такой стройной организации, как в поперечно-полосатой скелетной мышце. При этом тонкие филаменты прикрепляются к плотным тельцам. Некоторые из этих телец расположены на внутренней поверхности сарколеммы, но большинство из них находятся в саркоплазме. Плотные тельца состоят из альфа-актинина – белка обнаруженного в структуре Z-мембраны поперечнополосатых мышечных волокон. Некоторые из плотных телец расположенных на внутренней поверхности мембраны соприкасаются с плотными тельцами прилегающей клетки. Тем самым сила, создаваемая одной клеткой может передаваться следующей. Толстые миофиламенты гладкой мышцы содержат миозин, а тонкие – актин, тропомиозин. При этом в составе тонких миофиламентов не обнаружен тропонин.

Гладкие мышцы встречаются в стенках кровеносных сосудах, коже и внутренних органах.

Гладкая мышца играет важную роль в регуляции

  • просвета воздухоносных путей,

  • тонуса кровеносных сосудов,

  • двигательной активности желудочнокишечного тракта,

  • матки и др.

Классификация гладких мышц:

  • Мультиунитарные, входят в состав цилиарной мышцы, мышц радужки глаза, мышцы поднимающей волос.

  • Унитарные (висцеральная), находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже.

Мультиунитарная гладкая мышца.

  • состоит из отдельных гладкомышечных клеток, каждая из которых, находится независимо друг от друга;

  • имеет большую плотность иннервации;

  • как и поперечнополосатые мышечные волокна, снаружи покрыты веществом, напоминающим базальную мембрану, в состав которого входят, изолирующие клетки друг от друга, коллагеновые и гликопротеиновые волокна;

  • каждая мышечная клетка может сокращаться отдельно и ее активность регулируется нервными импульсами;

Унитарная гладкая мышца (висцеральная).

  • представляет собой пласт или пучок, а сарколеммы отдельных миоцитов имеют множественные точки соприкосновения. Это позволяет возбуждению распространяться от одной клетки к другой

  • мембраны рядом расположенных клеток образуют множественные плотные контакты (gap junctions), через которые ионы имеют возможность свободно передвигаться из одной клетки в другу

  • потенциал действия, возникающий на мембране гладкомышечной клетки, и ионные потоки могут распространяться по мышечному волокну, обеспечивая возможность одновременного сокращения большого количества отдельных клеток. Данный тип взаимодействия известен как функциональный синцитий

Важной особенность гладкомышечных клеток является их способность к самовозбуждению (автоматии), то есть они способны генерировать потенциал действия без воздействия внешнего раздражителя.

Постоянный мембранный потенциал покоя в гладких мышцах отсутствует, он постоянно дрейфует и в среднем составляет -50мВ. Дрейф происходит спонтанно, без каких-либо влияний и когда мембранный потенциал покоя достигает критического уровня возникает потенциал действия, который и вызывает сокращение мышцы. Продолжительность потенциала действия достигает нескольких секунд, поэтому и сокращение тоже может длиться несколько секунд. Возникшее возбуждение затем распространяется через нексус на соседние участки вызывая их сокращения.

Спонтанная (независимая) активность связана с растяжением гладкомышечных клеток и когда они растягиваются возникает потенциал действия. Частота возникновения потенциалов действия зависит от степени растяжения волокна. Например, перистальтические сокращения кишечника усиливаются при растягивании его стенок химусом.

Унитарные мышцы в основном сокращаются под влиянием нервных импульсов, но иногда возможны и спонтанные сокращения. Одиночный нервный импульс не способен вызывать ответной реакции. Для ее возникновение необходимо суммировать несколько импульсов.

Для всех гладких мышц при генерации возбуждения характерна активация кальциевых каналов, поэтому в гладких мышцах все процессы идут медленнее по сравнению со скелетной.

Скорость проведения возбуждения по нервным волокнам к гладким мышцам составляет 3-5 см в секунду.

Одним из важных раздражителей инициирующих сокращение гладких мышц является их растяжение. Достаточное растяжение гладкой мышцы обычно сопровождается появлением потенциалов действия. Таким образом, появлению потенциалов действия при растяжении гладкой мышцы способствует два фактора:

  • медленные волновые колебания мембранного потенциала;

  • деполяризация, вызываемая растяжением гладкой мышцы.

Данное свойство гладкой мышцы позволяет ей автоматически сокращаться при растяжении. Например, во время переполнения тонкого кишечника возникает перистальтическая волна, которая и продвигает содержимое.

Сокращение гладкой мышцы.

Агонист (адреналин, норадреналин, ангиотензин, вазопрессин) через свой рецептор активирует G‑белок (Gp), который в свою очередь активирует фосфолипазу С. Фосфолипаза С катализирует образование инозитолтрифосфата (ИТФ). Инозитолтрифосфат стимулирует высвобождение Ca2+ из кальциевых депо. Са2+связывается с кальмодулином, активирующим киназу миозина, которая фосфорилирует легкую цепь миозина. Это приводит к гидролизу АТФ и запускает цикл образования поперечных мостиков. В гладкой мышце движение актомиозиновых мостиков является более медленным процессом. Распад молекул АТФ и высвобождение энергии, необходимой для обеспечения движения актомиозиновых мостиков происходит не так быстро как в поперечнополосатой мышечной ткани.

Экономичность энергозатрат в гладкой мышце является чрезвычайно важным в общем потреблении организмом энергии, так как, кровеносные сосуды, тонкий кишечник, мочевой пузырь, желчный пузырь и другие внутренние органы постоянно находятся в тонусе.

Во время сокращения гладкая мышца способна укорачиваться вплоть до 2/3 ее первоначальной длины (скелетная мышца от 1/4 до 1/3 длины). Это позволяет полым органам выполнять свою функцию изменяя свой просвет в значительных пределах.