
- •1Определение операционной системы (ос). Назначение и основные функции ос.
- •Эволюция ос.
- •Классификация операционных систем.
- •Структура ос Windows. Краткий обзор архитектуры Windows.
- •Основные системные файлы Windows 95, nt, 2000.
- •Виртуальная память. Страничная организация памяти.
- •Страничная или сегментно-страничная организация памяти.
- •Алгоритмы замещения страниц виртуальной памяти. Алгоритмы замещения страниц
- •7.1.1 Алгоритм nru (Not Recently Used - не использовавшаяся в последнее время страница)
- •Адресное пространство процесса Win32 в Windows nt(2000). Регионы в адресном пространстве. Передача физической памяти региону. Гранулярность выделения ресурсов.
- •Раздел 4. В него загружаются ядро Windows nt и драйверы устройств. Этот раздел защищен и по чтению, и по записи. Регионы в адресном пространстве.
- •Передача физической памяти региону.
- •Механизм выделения страниц физической памяти.
- •Выделение физической памяти под программный код.
- •Атрибуты защиты страниц памяти в Win32. Изменение атрибутов защиты. Атрибуты защиты страниц.
- •Стек потока под управлением Windows nt (2000).
- •Стек потока под Windows 95, 98.
- •Функции компилятора для контроля стека.
- •Кучи в Windows nt (2000). Структура кучи в Win32. Функции управления кучей Win32. Кучи (Heaps).
- •Особенности кучи в Windows 95, Windows nt.
- •Структура арены.
- •Функции управления кучей Win32.
- •Удаление кучи.
- •Выделение блока памяти в определённой куче.
- •Куча, предоставляемая процессу по умолчанию, и дополнительные кучи. Назначение дополнительных куч Win32.
- •Дополнительные кучи Win32 процесса.
- •Создание дополнительных куч для эффективного управления памятью.
- •Локальный доступ. Создание дополнительных куч для локализации доступа.
- •Файлы, проецируемые в память. Файлы проецируемые в память (фпвп).
- •Проецирование в память exe и dll файлов.
- •Совместное использование статических данных несколькими экземплярами exe и dll модулей.
- •Иерархия функций работы с памятью.
- •Объекты ядра. Процессы, потоки и модули в Win32. Объекты kernel32.Dll.
- •Структура imte.
- •Структура modref.
- •Процессы Win32. Идентификатор процесса и дескриптор процесса. Объект ядра процесс в Win32. Функции для работы с процессами Таблица дескрипторов процесса.
- •Потоки. Состояния потоков. Свойства потоков. Объект ядра поток. Функции для работы с потоками.
- •Основные функции для работы с потоками.
- •Структура оя «поток».
- •Распределение времени между потоками. Классы приоритета. Уровни приоритета. Относительный уровень приоритета потока. Функции для работы с приоритетами потоков.
- •Уровни приоритета.
- •Функции Win32 связанные с планированием.
- •Учет квантов времени в Windows. Управление величиной кванта. Учёт квантов времени.
- •Сценарии планирования процессорного времени. Сценарий планирования.
- •Поток простоя.
- •Динамическое повышение приоритета. Динамическое повышение приоритета потока.
- •Синхронизация процессов и потоков. Объекты синхронизации. Синхронизация потоков без использования объектов синхронизации Синхронизация.
- •Синхронизация потоков без использования объектов синхронизации.
- •Синхронизация потоков.
- •Критические секции (кс). Критические секции.
- •Работа потока с несколькими критическими секциями.
- •Синхронизация потоков с объектами ядра. Ожидание завершения потока или процесса. Ожидание завершения нескольких потоков или процессов. Синхронизация объектов.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Объекты Мutex.
- •Синхронизация потоков с помощью семафоров.
- •Синхронизация потоков с помощью событий. События со сбросом вручную и с автоматическим сбросом.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Динамически подключаемые библиотеки (dll). Явная и неявная загрузка dll.
- •Обработка сообщения в ос Window. Структура threadinfo.
- •Посылка асинхронных сообщений в очередь потока
- •Системная очередь аппаратного ввода сообщений.
- •Работа с окнами в ос Windows. Классы окон. Z-порядок окон. Описание окон в ос Windows. Структуры управления окнами.
- •Существующие форматы исполняемых файлов. Формат pe-файла. Заголовок pe-файла. Основные секции pe-файла. Формат pe-файла.
- •Особенности ре-формата.
- •Заголовок ре-файла.
- •Основные секции исполняемого pe-файла.
- •Секция программного кода, импорт и экспорт в pe-файлах. Ресурсы pe-файла. Базовые поправки pe-файла. Импорт в pe-файлах.
- •Экспорт в pe-файлах
- •Ресурсы ре-файла.
- •Базовые поправки ре-файла.
- •Методы отслеживания изменений файловой системы.
- •Файловая система fat. Структура системной области и области данных в fat.
- •Назначение ntfs. Основные особенности и возможности ntfs. Структура файловой системы ntfs. Понятие тома и файла в ntfs.
- •Особенности ntfs.
- •Возможности ntfs.
- •Структура файловой системы ntfs.
- •Тома в ntfs.
- •Кластеры в ntfs.
- •Основные файлы ntfs, назначение основных файлов ntfs. Главная таблица файлов.
- •Назначение основных файлов ntfs.
- •Генерация имен файлов ms dos в ntfs.
- •Структура главной файловой таблицы (mft). Атрибуты файла ntfs. Заголовок атрибута, значение атрибута. Резидентные и нерезидентные атрибуты. Структура главной файловой таблицы (mft).
- •Структура файловых ссылок.
- •Атрибуты файла ntfs
- •Резидентные атрибуты.
- •Нерезидентные атрибуты.
- •Записи главной файловой таблицы ntfs (mft) для резидентных атрибутов и для нерезидентных атрибутов. Виртуальные и логические номера кластеров.
- •Структура больших файлов и каталогов в ntfs. Индексация файлов в ntfs. Структура каталогов в ntfs
- •Структура больших файлов в ntfs
- •Индексация файлов в ntfs.
- •Битовая карта.
- •Восстанавливаемость ntfs. Протоколирование транзакций. Журнал транзакций. Восстанавливаемость ntfs.
- •Протоколирование транзакций.
- •Журнал транзакций.
- •Записи модификации, записи контрольной точки, таблица транзакций, таблица измененных страниц в журнале транзакций. Записи модификации.
- •Записи контрольной точки.
- •Восстановление данных в ntfs. Проход анализа. Проход повтора. Проход отмены. Восстановление данных в ntfs.
- •Проход анализа.
- •Проход повтора.
- •Проход отмены.
- •Замена плохих секторов в ntfs. Файл плохих кластеров. Переназначение плохих кластеров.
- •Переназначение плохих кластеров.
- •Компрессия данных в фс ntfs.
- •Сжатие разрежённых файлов.
- •Сжатие обычных файлов.
- •Система шифрования данных (efs) в файловой системе ntfs .
- •Загрузка ос Windows 2000.
- •Предварительная загрузка.
- •Загрузка.
- •Загрузка ядра.
- •Инициализация ядра
- •Регистрация
- •Процесс разработки программы на ассемблере.
- •Трансляция программы
- •Компоновка программы
- •Основные регистры процессора Pentium.
- •Ассемблерные команды пересылки данных. Пример программы.
- •Работа с адресами и указателями на ассемблере. Пример программы.
- •Ассемблерные команды для работы со стеком. Пример программы.
- •Ассемблерные команды сложения и вычитания. Пример программы.
- •Ассемблерные команды умножения, деления и изменения знака. Пример программы.
- •Использование в Delphi встроенного ассемблера. Пример программы.
- •Ассемблерные команды линейного и циклического сдвига. Пример программы.
- •Ассемблерные команды условного и безусловного перехода. Состояние флагов. Пример программы.
- •Перечень команд условного перехода для команды cmp
- •Организация циклических программ на ассемблере. Пример программы.
Страничная или сегментно-страничная организация памяти.
Память процессора разбивается на страницы, размер которых зависит от типа процессора (обычно 4 - 8 Кб).
1) С помощью сегментной организации из логического адреса формируется линейный. Начиная с Windows 95 используется плоская модель памяти FLAT. Согласно этой модели содержимое селектора равно нулю.
смещение
селектор
:
16 разрядов 32 разряда
В Windows 3.x использовалась FLAT только для организации драйверов.
2) Преобразование линейного адреса в физический. Вся память разбита на страницы.
10 10 12
СR3
индекс каталога индекс
таблицы индекс байта страниц страниц
///////////////
/////////////////
Физическое адресное
пространство
1
///////////////////////////////////////////////////
2
каталог таблица
страниц страниц
В физическом адресном пространстве выбрана страница. Выбранная страница 1.
Каждый процесс имеет свой каталог страниц. Как только процесс (программа) загружается на выполнение в системный регистр CR3 записывается адрес каталога страниц. Индекс каталога страниц требуется для получения физического адреса таблицы страниц. Затем по индексу таблицы страниц определяется требуемая страница.
С помощью индекса байта определяется адрес требуемой ячейки памяти на выбранной странице. Пользователи работают только с линейными адресами. Преобразование линейного адреса в физический – дело аппаратного и программного обеспечения, то есть в Windows пользователь в отличие от DOS не имеет доступа к физическому адресу памяти.
Алгоритмы замещения страниц виртуальной памяти. Алгоритмы замещения страниц
Идеальный алгоритм заключается в том, что бы выгружать ту страницу, которая будет запрошена позже всех.
Но этот алгоритм не осуществим, т.к. нельзя знать какую страницу, когда запросят. Можно лишь набрать статистику использования.
7.1.1 Алгоритм nru (Not Recently Used - не использовавшаяся в последнее время страница)
Используются биты обращения (R-Referenced) и изменения (M-Modified) в таблице страниц.
При обращении бит R выставляется в 1, через некоторое время ОС не переведет его в 0.
M переводится в 0, только после записи на диск.
Благодаря этим битам можно получить 4-ре класса страниц:
не было обращений и изменений (R=0, M=0)
не было обращений, было изменение (R=0, M=1)
было обращение, не было изменений (R=1, M=0)
было обращений и изменений (R=1, M=1)
7.1.2 Алгоритм FIFO (первая прибыла - первая выгружена)
Недостаток заключается в том, что наиболее часто запрашиваемая страница может быть выгружена.
7.1.3 Алгоритм "вторая попытка"
П
одобен
FIFO, но если R=1, то страница переводится
в конец очереди, если R=0, то страница
выгружается.
Алгоритм "вторая попытка"
В таком алгоритме часто используемая страница никогда не покинет память.
Но в этом алгоритме приходится часто перемещать страницы по списку.
7.1.4 Алгоритм "часы" 7.1.4.2 Алгоритм WSClock
Чтобы избежать перемещения страниц по списку, Алгоритм основан на алгоритме "часы", но использует рабочий набор.
можно использовать указатель, который Используются битов R и M, а также время последнего использования.
п
еремещается
по списку.
Алгоритм "часы"
7.1.5 Алгоритм LRU (Least Recently Used - использовавшаяся реже всего)
Первый метод: Чтобы реализовать этот алгоритм, можно поддерживать список, в котором выстраивать страницы по количеству использования. Эта реализация очень дорога.
Второй метод: В таблице страниц добавляется запись - счетчик обращений к странице. Чем меньше значение счетчика, тем реже она использовалась.
7.1.6 Алгоритм "рабочий набор"
Замещение страниц по запросу - когда страницы загружаются по требованию, а не заранее, т.е. процесс прерывается и ждет загрузки страницы.
Буксование - когда каждую следующую страницу приходится процессу загружать в память.
Чтобы не происходило частых прерываний, желательно чтобы часто запрашиваемые страницы загружались заранее, а остальные подгружались по необходимости.
Рабочий набор - множество страниц (к), которое процесс использовал до момента времени (t). Т.е. можно записать функцию w(k,t) - Зависимость рабочего набора w(k,t) от количества запрошенных страниц
Т.е. рабочий набор выходит в насыщение, значение w(k,t) в режиме насыщения может служить для рабочего набора, который необходимо загружать до запуска процесса. Алгоритм заключается в том, чтобы определить рабочий набор, найти и выгрузить страницу, которая не входит в рабочий набор. Можно реализовать, записывая, при каждом обращении к памяти, номер страницы в специальный сдвигающийся регистр, затем удалялись бы дублирующие страницы. Но это дорого.