
- •1Определение операционной системы (ос). Назначение и основные функции ос.
- •Эволюция ос.
- •Классификация операционных систем.
- •Структура ос Windows. Краткий обзор архитектуры Windows.
- •Основные системные файлы Windows 95, nt, 2000.
- •Виртуальная память. Страничная организация памяти.
- •Страничная или сегментно-страничная организация памяти.
- •Алгоритмы замещения страниц виртуальной памяти. Алгоритмы замещения страниц
- •7.1.1 Алгоритм nru (Not Recently Used - не использовавшаяся в последнее время страница)
- •Адресное пространство процесса Win32 в Windows nt(2000). Регионы в адресном пространстве. Передача физической памяти региону. Гранулярность выделения ресурсов.
- •Раздел 4. В него загружаются ядро Windows nt и драйверы устройств. Этот раздел защищен и по чтению, и по записи. Регионы в адресном пространстве.
- •Передача физической памяти региону.
- •Механизм выделения страниц физической памяти.
- •Выделение физической памяти под программный код.
- •Атрибуты защиты страниц памяти в Win32. Изменение атрибутов защиты. Атрибуты защиты страниц.
- •Стек потока под управлением Windows nt (2000).
- •Стек потока под Windows 95, 98.
- •Функции компилятора для контроля стека.
- •Кучи в Windows nt (2000). Структура кучи в Win32. Функции управления кучей Win32. Кучи (Heaps).
- •Особенности кучи в Windows 95, Windows nt.
- •Структура арены.
- •Функции управления кучей Win32.
- •Удаление кучи.
- •Выделение блока памяти в определённой куче.
- •Куча, предоставляемая процессу по умолчанию, и дополнительные кучи. Назначение дополнительных куч Win32.
- •Дополнительные кучи Win32 процесса.
- •Создание дополнительных куч для эффективного управления памятью.
- •Локальный доступ. Создание дополнительных куч для локализации доступа.
- •Файлы, проецируемые в память. Файлы проецируемые в память (фпвп).
- •Проецирование в память exe и dll файлов.
- •Совместное использование статических данных несколькими экземплярами exe и dll модулей.
- •Иерархия функций работы с памятью.
- •Объекты ядра. Процессы, потоки и модули в Win32. Объекты kernel32.Dll.
- •Структура imte.
- •Структура modref.
- •Процессы Win32. Идентификатор процесса и дескриптор процесса. Объект ядра процесс в Win32. Функции для работы с процессами Таблица дескрипторов процесса.
- •Потоки. Состояния потоков. Свойства потоков. Объект ядра поток. Функции для работы с потоками.
- •Основные функции для работы с потоками.
- •Структура оя «поток».
- •Распределение времени между потоками. Классы приоритета. Уровни приоритета. Относительный уровень приоритета потока. Функции для работы с приоритетами потоков.
- •Уровни приоритета.
- •Функции Win32 связанные с планированием.
- •Учет квантов времени в Windows. Управление величиной кванта. Учёт квантов времени.
- •Сценарии планирования процессорного времени. Сценарий планирования.
- •Поток простоя.
- •Динамическое повышение приоритета. Динамическое повышение приоритета потока.
- •Синхронизация процессов и потоков. Объекты синхронизации. Синхронизация потоков без использования объектов синхронизации Синхронизация.
- •Синхронизация потоков без использования объектов синхронизации.
- •Синхронизация потоков.
- •Критические секции (кс). Критические секции.
- •Работа потока с несколькими критическими секциями.
- •Синхронизация потоков с объектами ядра. Ожидание завершения потока или процесса. Ожидание завершения нескольких потоков или процессов. Синхронизация объектов.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Объекты Мutex.
- •Синхронизация потоков с помощью семафоров.
- •Синхронизация потоков с помощью событий. События со сбросом вручную и с автоматическим сбросом.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Динамически подключаемые библиотеки (dll). Явная и неявная загрузка dll.
- •Обработка сообщения в ос Window. Структура threadinfo.
- •Посылка асинхронных сообщений в очередь потока
- •Системная очередь аппаратного ввода сообщений.
- •Работа с окнами в ос Windows. Классы окон. Z-порядок окон. Описание окон в ос Windows. Структуры управления окнами.
- •Существующие форматы исполняемых файлов. Формат pe-файла. Заголовок pe-файла. Основные секции pe-файла. Формат pe-файла.
- •Особенности ре-формата.
- •Заголовок ре-файла.
- •Основные секции исполняемого pe-файла.
- •Секция программного кода, импорт и экспорт в pe-файлах. Ресурсы pe-файла. Базовые поправки pe-файла. Импорт в pe-файлах.
- •Экспорт в pe-файлах
- •Ресурсы ре-файла.
- •Базовые поправки ре-файла.
- •Методы отслеживания изменений файловой системы.
- •Файловая система fat. Структура системной области и области данных в fat.
- •Назначение ntfs. Основные особенности и возможности ntfs. Структура файловой системы ntfs. Понятие тома и файла в ntfs.
- •Особенности ntfs.
- •Возможности ntfs.
- •Структура файловой системы ntfs.
- •Тома в ntfs.
- •Кластеры в ntfs.
- •Основные файлы ntfs, назначение основных файлов ntfs. Главная таблица файлов.
- •Назначение основных файлов ntfs.
- •Генерация имен файлов ms dos в ntfs.
- •Структура главной файловой таблицы (mft). Атрибуты файла ntfs. Заголовок атрибута, значение атрибута. Резидентные и нерезидентные атрибуты. Структура главной файловой таблицы (mft).
- •Структура файловых ссылок.
- •Атрибуты файла ntfs
- •Резидентные атрибуты.
- •Нерезидентные атрибуты.
- •Записи главной файловой таблицы ntfs (mft) для резидентных атрибутов и для нерезидентных атрибутов. Виртуальные и логические номера кластеров.
- •Структура больших файлов и каталогов в ntfs. Индексация файлов в ntfs. Структура каталогов в ntfs
- •Структура больших файлов в ntfs
- •Индексация файлов в ntfs.
- •Битовая карта.
- •Восстанавливаемость ntfs. Протоколирование транзакций. Журнал транзакций. Восстанавливаемость ntfs.
- •Протоколирование транзакций.
- •Журнал транзакций.
- •Записи модификации, записи контрольной точки, таблица транзакций, таблица измененных страниц в журнале транзакций. Записи модификации.
- •Записи контрольной точки.
- •Восстановление данных в ntfs. Проход анализа. Проход повтора. Проход отмены. Восстановление данных в ntfs.
- •Проход анализа.
- •Проход повтора.
- •Проход отмены.
- •Замена плохих секторов в ntfs. Файл плохих кластеров. Переназначение плохих кластеров.
- •Переназначение плохих кластеров.
- •Компрессия данных в фс ntfs.
- •Сжатие разрежённых файлов.
- •Сжатие обычных файлов.
- •Система шифрования данных (efs) в файловой системе ntfs .
- •Загрузка ос Windows 2000.
- •Предварительная загрузка.
- •Загрузка.
- •Загрузка ядра.
- •Инициализация ядра
- •Регистрация
- •Процесс разработки программы на ассемблере.
- •Трансляция программы
- •Компоновка программы
- •Основные регистры процессора Pentium.
- •Ассемблерные команды пересылки данных. Пример программы.
- •Работа с адресами и указателями на ассемблере. Пример программы.
- •Ассемблерные команды для работы со стеком. Пример программы.
- •Ассемблерные команды сложения и вычитания. Пример программы.
- •Ассемблерные команды умножения, деления и изменения знака. Пример программы.
- •Использование в Delphi встроенного ассемблера. Пример программы.
- •Ассемблерные команды линейного и циклического сдвига. Пример программы.
- •Ассемблерные команды условного и безусловного перехода. Состояние флагов. Пример программы.
- •Перечень команд условного перехода для команды cmp
- •Организация циклических программ на ассемблере. Пример программы.
События со сбросом вручную.
При освобождении события со сбросом вручную из состояния ожидания могут выйти одновременно несколько потоков.
Пример. Один поток считывает, другой эти данные обрабатывает.
ResetEvent(…) – переводит в состояние non-signaled.
SetEvent(…) – переводит в свободное состояние signaled.
Поток перед считыванием с помощью функции ResetEvent(…) переводит в занятое состояние, считывает и освобождает с помощью SetEvent(…). Остальные потоки ждут с помощью функции WaitForSingleObject(…).
События с автоматическим сбросом.
Освобождаются с помощью SetEvent(…), переходят в занятое состояние с помощью WaitForMultipleObjects(…), как только событие освобождается.
WaitForMultipleObjects(…);
.
.
.
SetEvent(…);
Для событий с автосбросом SetEvent(…) не используется.
Объекты Мutex.
Объекты ядра Mutex гарантируют потокам взаимоисключающий доступ к единственному ресурсу. Mutex ведут себя точно так же, как и критические секции. Однако, если последние являются объектами пользовательского режима, то Mutex — объекты ядра. Кроме того, объект Mutex позволяет синхронизировать доступ к ресурсу нескольких потоков из разных процессов; при этом можно задать максимальное время ожидания доступа к ресурсу.
Для использования объекта Mutex один из процессов должен сначала создать его вызовом CreateMutex:
function CreateMutex(lpMutexAttributes: PSecurityAttributes;
bInitialOwner: BOOL; lpName: PChar): THandle;
где lpMutexAttributes – указывает на структуру SECURITY_ATTRIBUTES, которая содержит информацию о защите объекта ядра «mutex». Если защиты не нужно в этот параметр заносится nil.
bInitialOwner – определяют начальное состояние мьютекса. Если в нем передается FALSE (что обычно и бывает), объект-мьютекс не принадлежит ни одному из потоков и поэтому находится в свободном состоянии. Если же в нем передается TRUE, мьютекс изначально находится в занятом состоянии.
lpName – указатель на сроку, , заканчивающуюся двоичным нулем и содержащую имя объекта «mutex». Применяется в тех случаях, когда объект «mutex» используется для синхронизации потоков разных процессов. Если мьютекс используется для синхронизации потоков одного процесса, этот параметр устанавливается в nil.
При успешном выполнении функция CreateMutex возвращает дескриптор мьютекса, В случае ошибки функция возвращает nil. Причем, если при вызове функции CreateMutex указывается имя мьютекса и объект мьютекс с таким именем уже существует, то функция вернет значение – nil, а функция GetLastError вернет значение - ERROR_ALREADY_EXISTS.
Любой процесс может получить свой («процессо-зависимый») дескриптор существующего объекта "мьютекс", вызвав функцию OpenMutex:
HANDLE OpenMutex( DWORD fdwAccess, 800L bInheritHandle, PCTSTR pszName);
function OpenMutex(dwDesiredAccess: DWORD; bInheritHandle: BOOL;
lpName: PChar): THandle;
где dwDesiredAccess - определяет требуемый доступ к мьютексу. Возможные значения данного параметра приведены в таблице 7.1.
bInheritHandle - определяет тип наследования дескриптора. Если данный параметр имеет значение TRUE, процесс, создаваемый функцией CreateProcess будет наследовать данный дескриптор. Если же параметр имеет значение FALSE, дескриптор мьютекса не будет наследуемым.
lpName - указатель на сроку, заканчивающуюся двоичным нулем и содержащую имя мьютекса.
Значения параметра dwDesiredAccess
Значение |
Описание |
MUTEX_ALL_ACCESS |
Означает все возможные флаги доступа для мьютекса |
SYNCHRONIZE |
Допускается использование дескриптора объекта мьютекс в любой wait- функции для ожидания освобождения мьютекс. |
Поток получаст доступ к разделяемому ресурсу, вызывая одну из Wait-функций и передавая ей дескриптор мьютекса, который охраняет этот ресурс. Wait-функция проверяет состояние мьютекса. Если объект мьютекс свободен, Wait-функция переводит мьютекс в занятое состояние и разрешает продолжение выполнения потока.
Если Wait-функция определяет, что мьютекса занят, то поток переходит в состояние ожидания освобождения объекта мьютекс.
Когда ожидание мьютекса потоком успешно завершается, последний получает монопольный доступ к защищенному ресурсу. Все остальные потоки, пытающиеся обратиться к этому ресурсу, переходят в состояние ожидания. Когда поток, занимающий ресурс, заканчивает с ним работать, он должен освободить мьютекс вызовом функции ReleaseMutex
function ReleaseMutex(hMutex: THandle): BOOL;
где hMutex – дескриптор объекта мьютекс.
При успешном выполнении функция ReleaseMutex возвращает значение TRUE.
Объект мьютекс отличается от остальных объектов ядра тем, что занявшему его потоку передаются права на владение им. Объекты мьютексы способны запоминать, какому потоку они принадлежат. Если какой-то посторонний поток попытается освободить мьютекс вызовом функции ReleaseMutex, то данная функция вернет FALSE. Вызов функции GetLastError даст значение ERROR_NOT_OWNER.