
- •Понятие технологии баз данных. Эволюция технологий баз данных.
- •Стандарт языка sql и его окружения.
- •Перспективные направления развития технологий баз данных.
- •Проблемы и текущие задания исследований в области баз данных.
- •Новые возможности sql-3. Перспективы развития стандарта.
- •6. Інтеграція інформаційних ресурсів
- •7. Аналітичні функції. Призначення. Синтаксис
- •8. Динамічний sql. Призначення. Порівняння динамічного та статичного
- •9. Реалізація динамічного sql за допомогою пакета dbms_sql
- •11. Native Dynamic sql
- •12. Засоби апи (остальное – на пикче)
- •13. Стандарты языка sql. Их виды и предназначение.
- •14. Динамічний і статичний sql
- •18. Проектування баз даних за допомогою uml. Порівняння оомд та інших
- •19. Управління сводними даними
- •20. Проблеми сховищ даних
- •21. Моделювання даних за допомогою uml.
- •22. Ообд: основні концепції, організація і управління
- •23. Проектування сховищ даних
- •24. Архітектура сховища даних
- •25. Вибір субд для сховища даних
- •26. Концепція сховищ даних.
- •27. Завантаження даних у сховища.
- •28. Експлуатація сховищ даних
- •29. Управління сховищем даних
- •30. Створення сховища даних
- •31. Секціонування сховищ даних.
- •32. Індексування сховищ даних. Индексирование данных
- •36. Принципы построения xml документов
21. Моделювання даних за допомогою uml.
Класс – это основной строительный блок ПС. Это понятие присутствует и в ОО языках программирования, то есть между классами UML и программными классами есть соответствие, являющееся основой для автоматической генерации программных кодов или для выполнения реинжиниринга. Каждый класс имеет название, атрибуты и операции. Класс на диаграмме показывается в виде прямоугольника, разделенного на 3 области. В верхней содержится название класса, в средней – описание атрибутов (свойств), в нижней – названия операций – услуг, предоставляемых объектами этого класса.
Атрибуты класса определяют состав и структуру данных, хранимых в объектах этого класса. Каждый атрибут имеет имя и тип, определяющий, какие данные он представляет. При реализации объекта в программном коде для атрибутов будет выделена память, необходимая для хранения всех атрибутов, и каждый атрибут будет иметь конкретное значение в любой момент времени работы программы. Объектов одного класса в программе может быть сколь угодно много, все они имеют одинаковый набор атрибутов, описанный в классе, но значения атрибутов у каждого объекта свои и могут изменяться в ходе выполнения программы.
Обобщение на диаграммах классов используется, чтобы показать связь между классом-родителем и классом-потомком. Оно вводится на диаграмму, когда возникает разновидность какого-либо класса а также в тех случаях, когда в системе обнаруживаются несколько классов, обладающих сходным поведением
Как уже говорилось ранее, UML позволяет строить модели с различным уровнем детализации.
Применение диаграмм классов
Диаграммы классов создаются при логическом моделировании ПС и служат для следующих целей:
Для моделирования данных. Анализ предметной области позволяет выявить основные характерные для нее сущности и связи между ними. Это удобно моделируется с помощью диаграмм классов. Эти диаграммы являются основой для построения концептуальной схемы базы данных.
Для представления архитектуры ПС. Можно выделить архитектурно значимые классы и показать их на диаграммах, описывающих архитектуру ПС.
Для моделирования навигации экранов. На таких диаграммах показываются пограничные классы и их логическая взаимосвязь. Информационные поля моделируются как атрибуты классов, а управляющие кнопки – как операции и отношения.
Для моделирования логики программных компонент (будет описано в последующих статьях).
Для моделирования логики обработки данных.
22. Ообд: основні концепції, організація і управління
В наиболее общей и классической постановке объектно-ориентированный подход базируется на концепциях:
объекта и идентификатора объекта;
атрибутов и методов;
классов;
иерархии и наследования классов.
Любая сущность реального мира в объектно-ориентированных языках и системах моделируется в виде объекта. Любой объект при своем создании получает генерируемый системой уникальный идентификатор, который связан с объектом во все время его существования и не меняется при изменении состояния объекта.
Каждый объект имеет состояние и поведение. Состояние объекта - набор значений его атрибутов. Поведение объекта - набор методов (программный код), оперирующих над состоянием объекта. Значение атрибута объекта - это тоже некоторый объект или множество объектов. Состояние и поведение объекта инкапсулированы в объекте; взаимодействие между объектами производится на основе передачи сообщений и выполнении соответствующих методов.
Множество объектов с одним и тем же набором атрибутов и методов образует класс объектов. Объект должен принадлежать только одному классу (если не учитывать возможности наследования, см. следующий абзац). Допускается наличие примитивных предопределенных классов, объекты-экземляры которых не имеют атрибутов: целые, строки и т.д. Класс, объекты которого могут служить значениями атрибута объектов другого класса, называется доменом этого атрибута.
Допускается порождение нового класса на основе уже существующего класса - наследование. В этом случае новый класс, называемый подклассом существующего класса (суперкласса) наследует все атрибуты и методы суперкласса. В подклассе, кроме того, могут быть определены дополнительные атрибуты и методы. Различаются случаи простого и множественного наследования. В первом случае подкласс может определяться только на основе одного суперкласса, во втором случае суперклассов может быть несколько. Если в языке или системе поддерживается единичное наследование классов, набор классов образует древовидную иерархию. При поддержании множественного наследования классы связаны в ориентированный граф с корнем, называемый решеткой классов. Объект подкласса считается принадлежащим любому суперклассу этого класса.
Одной из более поздних идей объектно-ориентированного подхода является идея возможного переопределения атрибутов и методов суперкласса в подклассе (перегрузки методов). Эта возможность увеличивает гибкость, но порождает дополнительную проблему: при компиляции объектно-ориентированной программы могут быть неизвестны структура и программный код методов объекта, хотя его класс (в общем случае - суперкласс) известен. Для разрешения этой проблемы применяется так называемый метод позднего связывания, означающий, по сути дела, интерпретационный режим выполнения программы с распознаванием деталей реализации объекта во время выполнения посылки сообщения к нему. Введение некоторых ограничений на способ определения подклассов позволяет добиться эффективной реализации без потребностей в интерпретации .
Видимо, наиболее важным новым качеством ООБД, которое позволяет достичь объектно-ориентированный подход, является поведенческий аспект объектов. В прикладных информационных системах, основывавшихся на БД с традиционной организацией (вплоть до тех, которые базировались на семантических моделях данных), существовал принципиальный разрыв между структурной и поведенческой частями. Структурная часть системы поддерживалась всем аппаратом БД, ее можно было моделировать, верифицировать и т.д., а поведенческая часть создавалась изолированно. В частности, отсутствовали формальный аппарат и системная поддержка совместного моделирования и гарантирования согласованности этих структурной (статической) и поведенческой (динамической) частей. В среде ООБД проектирование, разработка и сопровождение прикладной системы становится процессом, в котором интегрируются структурный и поведенческий аспекты. Конечно, для этого нужны специальные языки, позволяющие определять объекты и создавать на их основе прикладную систему .
Объектно-ориентированные базы данных обычно рекомендованы для тех случаев, когда требуется высокопроизводительная обработка данных, имеющих сложную структуру.
В манифесте ООБД[4] предлагаются обязательные характеристики, которым должна отвечать любая ООБД. Их выбор основан на 2 критериях: система должна быть объектно-ориентированной и представлять собой базу данных.
Обязательные характеристики
Поддержка сложных объектов. В системе должна быть предусмотрена возможность создания составных объектов за счет применения конструкторов составных объектов. Необходимо, чтобы конструкторы объектов были ортогональны, то есть любой конструктор можно было применять к любому объекту.
Поддержка индивидуальности объектов. Все объекты должны иметь уникальный идентификатор, который не зависит от значений их атрибутов.
Поддержка инкапсуляции. Корректная инкапсуляция достигается за счет того, что программисты обладают правом доступа только к спецификации интерфейса методов, а данные и реализация методов скрыты внутри объектов.
Поддержка типов и классов. Требуется, чтобы в ООБД поддерживалась хотя бы одна концепция различия между типами и классами. (Термин «тип» более соответствует понятию абстрактного типа данных. В языках программирования переменная объявляется с указанием ее типа. Компилятор может использовать эту информацию для проверки выполняемых с переменной операций на совместимость с ее типом, что позволяет гарантировать корректность программного обеспечения. С другой стороны класс является неким шаблоном для создания объектов и предоставляет методы, которые могут применяться к этим объектам. Таким образом, понятие «класс» в большей степени относится ко времени исполнения, чем ко времени компиляции.)
Поддержка наследования типов и классов от их предков. Подтип, или подкласс, должен наследовать атрибуты и методы от его супертипа, или суперкласса, соответственно.
Перегрузка в сочетании с полным связыванием. Методы должны применяться к объектам разных типов. Реализация метода должна зависеть от типа объектов, к которым данный метод применяется. Для обеспечения этой функциональности связывание имен методов в системе не должно выполняться до времени выполнения программы.
Вычислительная полнота. Язык манипулирования данными должен быть языком программирования общего назначения.
Набор типов данных должен быть расширяемым. Пользователь должен иметь средства создания новых типов данных на основе набора предопределенных системных типов. Более того, между способами использования системных и пользовательских типов данных не должно быть никаких различий.
Необязательные характеристики:
Множественное наследование
Проверка типов
Распределение
Проектные транзакции
Открытые характеристики:
Парадигмы программирования (процедурное, декларативное)
Система представления
Система типов
Однородность. Реализация — язык программирования — интерфейс.