Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_materialy_pechat_2013.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
446.46 Кб
Скачать

36 Основн способы закалки сталей Превращ аустенита

Способы закалки. Наиболее широкое применение получила закалка в одном охладителе. Такую закалку называют непрерывной. Во многих случаях, особенно для изделий сложной формы и при необходимости уменьшения деформации, применяют и другие способы закалки;

Прерывистая закалка (в двух средах). Изделие, закаливаемое по этому способу, сначала быстро охлаждают в воде до температуры несколько выше точки Ми, а затем быстро переносят в менее интенсивный охладитель (например, в масло или на воздух), в котором оно охлаждается до 20C. В результате переноса во вторую закалочную среду уменьшаются внутренние напряжения, которые возникли бы при быстром охлаждении в одной среде (воде), в том числе и в области температур мартенситного превращения.

Закалка с самоотпуском. В этом случае охлаждение изделия в закалочной среде прерывают, с тем чтобы в сердцевине изделия сохранилось еще некоторое количество теплоты. Под действием теплообмена температура в более сильно охлаждающихся поверхностных слоях повышается и сравни­вается с температурой сердцевины. Тем самым происходит отпуск поверх­ности стали (самоотпуск).

Закалку с самоотпуском применяют, например, для таких инструментов, как зубила, кувалды, слесарные молотки, керны, которые работают с ударными нагрузками и должны сочетать высокую твердость на поверхности с повышенной вязкостью в сердцевине.

Ступенчатая закалка. При выполнении закалки по этому способу сталь после нагрева до температуры закалки охлаждают в среде, имеющей температуру несколько выше точки Мн (обычно 18О-25О°С), и выдерживают в ней сравнительно короткое время. Затем изделие охлаждают до комнатной температуры на воздухе.

Изотермическая закалка. Закалку по этому способу выполют в основном так же, как и ступенчатую, но в данном случае предусматривается более длительная выдержка выше точки Мн. При такой выдержке происходит распад аустенита с образованием нижнего бейнита. Для углеродистых сталей изотермическая закалка не дает существенного повышения механических свойств по сравнению с получаемыми обычной закалкой и отпуском.

В качестве охлаждающей среды при ступенчатой и изотермической закалке чаще применяют расплавленные соли..

превращение аустенита при непрерывном охлаждении

Чем больше скорость охлаждения и ниже температура распада аустенита, тем дисперснее образующаяся ферритно-цементитная структура.

Следовательно, при небольшой скорости охлаждения образуется перлит, при большей - сорбит и еще большей троостит. Бейнит при непрерывном охлаждении углеродистой стали обычно не образуется.

При высоких скоростях охлаждения часть аустенита переохлаждается превращается в мартенсит. Структура в этом случае состоит из троостита и мартенсита.. Превращение аустенита в мартенсит не идет до конца, поэтому в закаленной стали наряду с мартенситом всегда присутствует в некотором количестве остаточный аустенит. Минимальную скорость охлаждения, при которой весь аустенит превращается в мартенсит, называют критической скоростью закалки.

После охлаждения сталь будет иметь структуру, состоящую из троостита, мартенсита и остаточного аустенита. При скорости охлаждения выше критической скорости закалки образуется только мартенсит. Критическая скорость закалки неодинакова для разных сталей и зависит от устойчивости аустенита, определяемой составом стали. Чем больше его устойчивость, тем меньше критическая скорость закалки.

37 Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокуютемпературу плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедениеметаллургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий имолибденшестого периода — танталвольфрам и рений. Все они имеют температуру плавления выше 2000 °C, химически относительно инертны и обладают повышенным показателем плотности. Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности.

Вольфрам.

Рений используется в сплавах с вольфрамом в концентрации до 22 %, что позволяет повысить тугоплавкость и устойчивость к коррозии. Торий применяется в качестве легирующего компонента вольфрама. Благодаря этому повышается износостойкостьматериалов. В порошковой металлургии компоненты могут быть использованы для спекания и последующего применения. Для получения тяжёлых сплавов вольфрама применяются никель и железо или никель и медь. Содержание вольфрама в данных сплавах как правило выше 90 %. Смешивание легирующего материала с ним низкое даже при спекании[9].

Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь[10]. Нити накаливания, состоящие из вольфрама, находят свое применение в быту и в приборостроении. Лампы более эффективно преобразовывают электроэнергию в свет с повышением температуры[9]. В вольфрамовой газодуговой сварке (англ.) оборудование используется постоянно, без плавления электрода. Высокая температура плавления вольфрама позволяет ему быть использованным при сварке без затрат[11][12]. Высокая плотность и твёрдость позволяют вольфраму бытьиспользованным в артиллерийских снарядах[13]. Его высокая температура плавления применяется при строении ракетных сопел, примером может служить ракета «Поларис»[14]. Иногда он находит свое применение благодаря своей плотности. Например, он находит свое применение в производстве клюшек для гольфа[15][16]. В таких деталях применение не ограничивается вольфрамом, так как более дорогой осмий тоже может быть использован.

Широкое применение находят сплавы молибдена. Наиболее часто используемый сплав — титан-цирконий-молибден — содержит в себе 0,5 % титана, 0,08 % циркония и остальное молибден. Сплав обладает повышенной прочностью при высоких температурах. Рабочая температура для сплава — 1060 °C. Высокое сопротивление сплава вольфрам-молибден (Mo 70 %, W 30 %) делает его идеальным материалом для отливки деталей из цинка, например, клапанов[17].

Молибден используется в ртутных герконовых реле, так как ртуть не формирует амальгамы с молибденом[18][19].

Молибден является самым часто используемым тугоплавким металлом. Наиболее важным является его использование в качестве усилителя сплавов стали. Применяется при изготовлении трубопроводов вместе с нержавеющей сталью. Высокая температура плавления молибдена, его сопротивляемость к износу и низкий коэффициент трения делают его очень полезным материалом для легирования. Его прекрасные показатели трения приводят его к использованию в качестве смазки где требуется надежность и производительность.

Ниобий почти всегда находится вместе с танталом; ниобий был назван в честь Ниобы, дочери Тантала в греческой мифологии. Ниобий находит множество путей для применения, некоторые он разделяет с тугоплавкими металлами. Его уникальность заключается в том, что он может быть разработан путем отжига для того, чтобы достичь широкого спектра показателей твёрдости и упругости; его показатель плотности самый малый по сравнению с остальными металлами данной группы. Он может применяться вэлектролитических конденсаторах и является самым частым металлом всуперпроводниковых сплавах. Ниобий может применяться в газовых турбинахвоздушного судна, в электронных лампах и ядерных реакторах.

Сплав ниобия C103, который состоит из 89 % ниобия, 10 % гафния и 1 % титана, находит свое применение при создании сопел вжидкостных ракетных двигателях, например таких как Apollo CSM (англ.)[24]. Применявшийся сплав не позволяет ниобию окисляться, так как реакция происходит при температуре от 400 °C.

Тантал является самым стойким к коррозии металлом из всех тугоплавких металлов.

Важное свойство тантала было выявлено благодаря его применению в медицине — он способен выдерживать кислую среду(организма). Иногда он используется в электролитических конденсаторах. Применяется в конденсаторах сотовых телефонов и компьютера.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]