
- •2. Титан и сплавы на его основе
- •6. Основные типы кристаллических решёток, их дефекты.
- •7 Сталь качественная конструкционная
- •8. Кристаллизация Ме. Зародыши. Слиток.
- •9.Диаграммы металлов с полиморфными превращениями
- •10 Цементируемые и улучшаемые легированные
- •11. Методы опред техн-х св-в Ме. Техн пробы
- •13. Механич. Испытания.
- •17. Структура и свойства композиционных материалов на полимерной матрице.
- •18. Физические свойства материалов и методы их оценки.
- •19. Термомеханическая и механотермическая обработка сталей. Патентирование металла, технология, примеры применения
- •20 Алюминий, технология его получения и области прим
- •21.Классификация металл-х сплавов.
- •22 Закалка и отпуск
- •23. Макроизломы.
- •24.Триботехнические св-ва металлов. Примеры анти-, фрикционных материалов, применяемых на транспорте
- •26. Диаграмма 1 типа. Правило отрезков.
- •27 Легированные стали классифицируют:
- •28. Влияние легирующих эл-тов на чугун.
- •29. Магний, своство сплавов, применение.
- •30. Диаграмма 2 типа. Правило отрезков.
- •32. Коррозионно-стойкие стали.
- •33.Анализ диаграммы сплавов, образующих неустойчивые хим. Соединения
- •34.Разновидности отжига и примеры применения его на транспорте
- •35. Диаграмма 4 типа. Правило отрезков.
- •36 Основн способы закалки сталей Превращ аустенита
- •38. Диаграмма 3 типа. Правило отрезков.
- •47 Классификация припоев
- •1. Классификация
- •48. Серый чугун. Антифрикционные сч
- •51. Классификация легированных чугунов, структура
- •52.Класификация и маркировка алюмин деформир
- •55. Опред-е твердости ме. Методы безобраз. Испытания
- •56. Технология производства меди, маркировка
- •57 Химическое модифицирование высокоэнергетическими методами.
- •58.Медно-никелевые сплавы, маркировка и области применения.
- •59.Различные виды цементации стали, технология, св-ва и применение
- •60 Классификация бронз. Маркировка и область применения
- •65.Технология производства чугуна (продукты доменного процесса).
- •70.Азотирование и нитроцементация.
- •76 Классификация и маркировка сталей.
- •78.Анализ основных видов отпуска стали. Структурно-фазовые превращения
- •81 Кремнийорганические пластмассы
- •83.Классификация конструкционных материалов и металлов. Их св-ва и примеры
32. Коррозионно-стойкие стали.
Составы сталей, устойчивых к электрохимической коррозии, устанавливают в зависимости от среды, для которой они предназначаются. Эти стали можно разделить на два основных класса: хромистые, имеющие после охлаждения на воздухе ферритную, мартенситно-ферритную (феррита более 10 %) или мартенситную структуру, и хромоникелевые, имеющие аустенитную, аустенитно-мартенситную или аустенитно-ферритную (феррита более 10%) структуру.
Коррозионная стойкость стали повышается термической обработкой: закалкой и высоким отпуском и созданием шлифованной и полированной поверхности.
Стали 12X13 и 20X13 применяют для изготовления деталей с повышенной пластичностью, подвергающихся ударным нагрузкам (клапанов гидравлических прессов, предметов домашнего обихода), а также изделий, испытывающих действие слабоагрессивных сред (атмосферных осадков, водных растворов солей органических кислот и т. д.).
Стали 30X13 и 40X13 используют для карбюраторных игл, пружин, хирургических инструментов и т. д
33.Анализ диаграммы сплавов, образующих неустойчивые хим. Соединения
Химическое соединение характеризуется определенным соотношением компонентов, а это отражается на диаграмме вертикальной линией, проходящей на оси абсцисс через точку, отвечающую соотношению компонентов в химическом соединении. Если компоненты А а В образуют химическое соединение АпВm, то, следовательно, на n+ т его атомов приходится п атомов Aиm атомов В. Определенному атомному соотношению соответствует и определенное соотношение по массе.
Химическое соединение устойчиво, если его можно нагреть без разложения до расплавления, и неустойчиво, если при нагреве оно разлагается. В зависимости от этого могут быть два вида диаграмм. Кроме того, возможно образование нескольких химических соединений между двумя компонентами, а также растворимость на базе химического соединения — эти обстоятельства также находят отражение в диаграмме состояния.
Диаграмма с неустойчивым химическим соединением
В отличие от диаграммы с устойчивым химическим соединением на рис. 104 приведена диаграмма состояний, где два компонента образуют неустойчивое химическое соединение, которое при нагреве до определенной температуры (t1)разлагается на жидкость и один из компонентов, т. е. не расплавляется полностью.
На линии DCF находятся в равновесии три фазы: жидкость концентрации D, кристаллы компонента В и кристаллы химического соединения АпВm.
При нагреве неустойчивое химическое соединение АпВm распадается на жидкость концентрации Dи кристаллы В.При охлаждении, следовательно, произойдет обратная реакция:
LD + B→AnBm.
Реакция эта подобна перитектической; жидкость реагирует с ранее выпавшими кристаллами, но образует не новый твердый раствор, как в случае перитектической реакции, а химическое соединение.
Процесс кристаллизации сплава I в равновесных условиях будет протекать следующим образом. В точке 1 начинается кристаллизация, выпадают кристаллы В, и концентрация жидкости изменяется по кривой 1— D.В точке 2 при постоянной температуре образуется неустойчивое химическое соединение по уравнению, приведенному выше. По окончании реакции в избытке остается жидкость, которая кристаллизуется с выделением соединения АпВm до тех пор, пока концентрация жидкости не достигнет точки Е. Тогда оставшаяся жидкость кристаллизуется в эвтектику, состоящую из кристаллов А и химического соединения. Следовательно, на кривой будем иметь две площадки: верхнюю, соответствующую образованию неустойчивого химического соединения, и нижнюю, соответствующую образованию эвтектики А + АпВm.