
- •1Основные понятия коллоидной химии; классификация, основные особенности, количественные характеристики дисперсных систем.
- •2. Диспергационные методы получения дисперсных систем
- •3. Конденсационные методы получения дисперсных систем
- •5Первый и второй законы Фика, диффузия, движущая сила диффузии, связь коэффициента диффузии с размерами частиц.
- •6. Гипсометрический закон Лапласа, диффузионно-седиментационное равновесие. Кривая седиментации для монодисперсных и полидисперсных систем.
- •7. Строение двойного электрического слоя (фи-потенциал и дзета-потенциал), теория Квинке-Гельмгольца-Перрена, теория Гуи-Чепмена, теория Штерна, строение мицеллы.
- •9 Закон Бугера-Ламберта-Бера, оптические свойства коллоидных растворов, оптические методы анализа дисперсности.
- •10. Работа когезии. Связь поверхностной энергии с взаимодействиями между молекулами (атомами, ионами), правило Трутона, уравнение Дюпре. .
- •12. Закон Лапласа: общая форма, частные случаи, капиллярное поднятие жидкости, уравнение Жюрена.
- •13 Закон Томсона (Кельвина), зависимость давления насыщенного пара от кривизны поверхности жидкости, капиллярная конденсация.
- •14. Закон Гиббса-Оствальда-Фрейндлиха, влияние дисперсности на растворимость твердых частиц, процессы изотермической перегонки в дисперсных системах.
- •15. Лиофильные коллоидные системы, методы получения. Самопроизвольное диспергирование макрофаз: критерий самопроизвольного диспергирования (по Ребиндеру-Щукину, примеры).
- •17 Солюбилизация
- •18. Термодинамика мицеллообразования, диаграмма фазовых состояний, точка Крафта, жидкокристаллические системы.
- •19. Образование и строение обратных мицелл
- •Классификация
- •Свойства
- •21 Термопреципитация
- •22. Фотофорез
- •23. Термофорез.
- •25 Быстрая и медленная коагуляция.
- •26. Концентрационная и нейтрализационная коагуляция
- •27. Изотермическая перегонка.
- •29 Эффект Марангони
- •30. Тиксотропия.
- •31. Флотация.
- •33. Правило Банкрофта
- •34. Правило Дюкло-Траубе
- •35. Правило Шульца-Гарди.
- •37. Теория длфо.
- •38. Слои Шиллера
- •39. Тактоиды
- •41. Кольца и слои Лизеганга
- •42. Пептизация.
- •43. Флокуляция
- •45. Адагуляция.
- •46. Аддитивность коагуляции.
- •47. Антагонизм коагуляции
- •49. Коагуляционные структуры
- •50. Структуры с фазовыми контактами
- •51. Синерезис.
- •53. Кристаллизационные структуры
- •54. Когезия.
- •55. Адгезия
- •57. Смачивание.
- •58. Капиллярное давление
- •59. Закон Ньютона (трение)
- •61. Застудневание
- •62.Ползучесть
- •63. Вязкость коллоидных растворов. Зависимость вязкости раствора от концентрации взвешенных частиц (уравнение Эйнштейна)
- •Аномалии вязкости
- •65. Как образуется снежинка
- •66. Хемосорбция и каталитическая сорбция, сходства и отличия, привести примеры
- •67. Почему “химические дожди” выпадают недалеко от источника загрязнения?
- •69. Абсорция.
- •70. Хемосорбция.
- •71. Каталитическая сорбция
- •73. В чём сходство и различие газовой и жидкой дисперсионных сред?
- •74. Почему туман в вечернее время распространяется в приземном слое, не оседая на поверхность?
- •75. Почему снег выпадает иногда в виде “крупы”?
- •77. Адсорбция и адагуляция, сходства и отличия, привести примеры
- •Количественные характеристики дисперсных систем
- •Классификация дисперсных систем по размеру частиц дисперсной фазы
- •Классификация дисперсных систем по фракционному составу частиц дисперсной фазы
- •Классификация дисперсных систем по концентрации частиц
- •Классификация дисперсных систем по взаимодействию дисперсной фазы с дисперсной средой
- •Классификация дисперсных систем по характеру распределения фаз
- •Классификация дисперсных систем по агрегатному состоянию
- •Классификация дисперсных частиц по размерам
- •Классификация дисперсных частиц по форме
- •Классификация дисперсных частиц по строению
- •Классификация дисперсных частиц по химическому составу
- •Размерные эффекты, наблюдаемые в дисперсных системах
- •Тд свойства дисперсных частиц
- •Механические свойства дисперсных частиц
- •Магнитные свойства дисперсных частиц
- •Каталитические свойства дисперсных частиц
- •Энергетическое и силовое определение поверхностного натяжения
- •Факторы, влияющие на поверхностное натяжение
- •Дисперсная и полярная составляющие поверхностного натяжения
- •Метод избыточных величин Гиббса
- •Капиллярное давление
- •Закон Лапласа
- •Смачивание
- •Закон Юнга
- •Несмачивание, полное смачивание, гидрофильность, гидрофобность.
- •Правило Антонова
- •Эффект Марангони
- •Зависимость смачивания от свойств твёрдой поверхности
- •Смачивание нанокаплями
- •Адгезия, когезия, уравнение Дюпре
- •Закон Кельвина
- •Закон Гиббса-Оствальда
- •Изотермическая перегонка
- •Капиллярная конденсация
- •Закон Жюрена
- •Закон Пуазейля
- •Измерение поверхностного натяжения методом капиллярного подъёма
- •Измерение поверхностного натяжения методом сидящей капли
- •Измерение поверхностного натяжения методом максимального давления
- •Измерение поверхностного натяжения методом пластинки Вильгельми
- •Измерение поверхностного натяжения методом вращающейся капли
- •Измерение поверхностной энергии твёрдых тел
- •Адсорбция пав из растворов на поверхности твёрдых тел
- •Химическое модифицирование твёрдых тел
- •Классификация пав по растворимости
- •Классификация пав по диссоциации в воде
- •Классификация пав по способу образования мицелл и происхождению
- •Классификация пав по фх воздействию на поверхность раздела между фазами
- •Гидрофильно-липофильный баланс
- •Критический параметр упаковки
- •Механизмы образования электрического заряда на поверхности твёрдых тел и жидкостей в дисперсных системах
- •Строение дэс
- •Влияние электролитов на дэс
- •Электрофорез
- •Электроосмос
- •Потенциал течения
- •Потенциал оседания
- •Электрокапиллярные явления (электрокапиллярная кривая, закон Липпмана)
9 Закон Бугера-Ламберта-Бера, оптические свойства коллоидных растворов, оптические методы анализа дисперсности.
Закон Бугера-Ламберта-Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.
Закон
выражается следующей формулой: Iп=
I0*exp(-klс)
или
Где Iп – интенсивность прошедшего через золь света, I0 — интенсивность падающего пучка света, l — толщина слоя вещества, через которое проходит свет, k - коэффициентом поглощения, с – концентрация золя (kλ = k*c — показатель поглощения).
Для золей металлов характерна селективность поглощения (зависимость от дисперсности). С ростом дисперсности максимум поглощения сдвигается в сторону коротких волн. Эффект влияния дисперсности связан с изменением как спектра поглощения, так и спектра рассеяния (фиктивного поглощения). Пример: Золи золота r=20нм поглощают зеленый свет с длиной волны 530 нм, имеют яркий красный цвет. При r=40-50 нм максимум поглощения приходит на желтый свет с длиной волны 590-600 нм и золь кажется синим.
Оптические свойства дисперсных систем обусловлены взаимодействием электромагнитного излучения, обладающего определенной энергией, с частицами дисперсной фазы. Особенности оптических свойств определяются природой частиц и их размерами, соотношением между длиной волны электромагнитного излучения и размерами частиц. Одним из наиболее характерных оптических свойств дисперсных систем является рассеяние света.
В зависимости от свойств частиц дисперсной фазы и их размеров свет, проходя через систему, может поглощаться, отражаться или рассеиваться. Последствия воздействия света на дисперсную систему определяются законами геометрической оптики.
Дисперсные системы способны к рассеянию света, если размеры частиц (а) намного меньше длины волны света (λ).
ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА.
Оптические свойства дисперсных систем используют для определения размеров и концентрации частиц дисперсной фазы.
Ультрамикроскопия:
объект (например, дисперная система)
освещается сбоку мощным пучком света.
Наблюдают рассеянный свет частицами,
взвешенными в среде с иным показателем
преломления. При известных массовых
(с) и частичных (ν) концентрациях можно
найти размеры частиц:
и
.
{r=
∛[3c/(4πνρ)]
или l=
∛[c/(νρ)]}.
Турбидиметрический метод основан на измерении интенсивности света, прошедшего через дисперсную систему. Интенсивность падающего светового потока ослабляется в результате его рассеяние дисперсной системой. Ослабление света dI пропорционально интенсивности падающего света и приращению исследуемой толщины dx. – dI = τIdx, где τ – мутность. При ν=const D1/D2= ν1/ ν2. При с=const D1/D2= ν1/ν2=d13/ d13.
Нефелометрический метод основан на измерении интенсивности света, рассеянного дисперсной системой. Метод основан на способности рассеивать свет согласно закону Рэлея. Принцип действия нефелометра основан на уравнивании интенсивностей рассеянного света исследуемой дисперсной системы и эталонного образца с известной концентрацией или размерами частиц. Более высокая чувствительность и точность этого метода по сравнению с турбидиметрией позволяет определить не только концентрацию и размер частиц в золях, но и форму частиц, межчастичные взаимодействия и др. свойства дисперсных систем. Широко применяется для определения молекулярных масс макромолекул.
IP = I0kcm/ρ = I0kMc/(NAρ). M = τ/(Hc), где H = k/(NAρ).
С помощью ультрамикроскопа регистрируют не сами частицы, а рассеянный свет этих частиц. По яркости рассеянного света определяют размер частиц.