
- •1Основные понятия коллоидной химии; классификация, основные особенности, количественные характеристики дисперсных систем.
- •2. Диспергационные методы получения дисперсных систем
- •3. Конденсационные методы получения дисперсных систем
- •5Первый и второй законы Фика, диффузия, движущая сила диффузии, связь коэффициента диффузии с размерами частиц.
- •6. Гипсометрический закон Лапласа, диффузионно-седиментационное равновесие. Кривая седиментации для монодисперсных и полидисперсных систем.
- •7. Строение двойного электрического слоя (фи-потенциал и дзета-потенциал), теория Квинке-Гельмгольца-Перрена, теория Гуи-Чепмена, теория Штерна, строение мицеллы.
- •9 Закон Бугера-Ламберта-Бера, оптические свойства коллоидных растворов, оптические методы анализа дисперсности.
- •10. Работа когезии. Связь поверхностной энергии с взаимодействиями между молекулами (атомами, ионами), правило Трутона, уравнение Дюпре. .
- •12. Закон Лапласа: общая форма, частные случаи, капиллярное поднятие жидкости, уравнение Жюрена.
- •13 Закон Томсона (Кельвина), зависимость давления насыщенного пара от кривизны поверхности жидкости, капиллярная конденсация.
- •14. Закон Гиббса-Оствальда-Фрейндлиха, влияние дисперсности на растворимость твердых частиц, процессы изотермической перегонки в дисперсных системах.
- •15. Лиофильные коллоидные системы, методы получения. Самопроизвольное диспергирование макрофаз: критерий самопроизвольного диспергирования (по Ребиндеру-Щукину, примеры).
- •17 Солюбилизация
- •18. Термодинамика мицеллообразования, диаграмма фазовых состояний, точка Крафта, жидкокристаллические системы.
- •19. Образование и строение обратных мицелл
- •Классификация
- •Свойства
- •21 Термопреципитация
- •22. Фотофорез
- •23. Термофорез.
- •25 Быстрая и медленная коагуляция.
- •26. Концентрационная и нейтрализационная коагуляция
- •27. Изотермическая перегонка.
- •29 Эффект Марангони
- •30. Тиксотропия.
- •31. Флотация.
- •33. Правило Банкрофта
- •34. Правило Дюкло-Траубе
- •35. Правило Шульца-Гарди.
- •37. Теория длфо.
- •38. Слои Шиллера
- •39. Тактоиды
- •41. Кольца и слои Лизеганга
- •42. Пептизация.
- •43. Флокуляция
- •45. Адагуляция.
- •46. Аддитивность коагуляции.
- •47. Антагонизм коагуляции
- •49. Коагуляционные структуры
- •50. Структуры с фазовыми контактами
- •51. Синерезис.
- •53. Кристаллизационные структуры
- •54. Когезия.
- •55. Адгезия
- •57. Смачивание.
- •58. Капиллярное давление
- •59. Закон Ньютона (трение)
- •61. Застудневание
- •62.Ползучесть
- •63. Вязкость коллоидных растворов. Зависимость вязкости раствора от концентрации взвешенных частиц (уравнение Эйнштейна)
- •Аномалии вязкости
- •65. Как образуется снежинка
- •66. Хемосорбция и каталитическая сорбция, сходства и отличия, привести примеры
- •67. Почему “химические дожди” выпадают недалеко от источника загрязнения?
- •69. Абсорция.
- •70. Хемосорбция.
- •71. Каталитическая сорбция
- •73. В чём сходство и различие газовой и жидкой дисперсионных сред?
- •74. Почему туман в вечернее время распространяется в приземном слое, не оседая на поверхность?
- •75. Почему снег выпадает иногда в виде “крупы”?
- •77. Адсорбция и адагуляция, сходства и отличия, привести примеры
- •Количественные характеристики дисперсных систем
- •Классификация дисперсных систем по размеру частиц дисперсной фазы
- •Классификация дисперсных систем по фракционному составу частиц дисперсной фазы
- •Классификация дисперсных систем по концентрации частиц
- •Классификация дисперсных систем по взаимодействию дисперсной фазы с дисперсной средой
- •Классификация дисперсных систем по характеру распределения фаз
- •Классификация дисперсных систем по агрегатному состоянию
- •Классификация дисперсных частиц по размерам
- •Классификация дисперсных частиц по форме
- •Классификация дисперсных частиц по строению
- •Классификация дисперсных частиц по химическому составу
- •Размерные эффекты, наблюдаемые в дисперсных системах
- •Тд свойства дисперсных частиц
- •Механические свойства дисперсных частиц
- •Магнитные свойства дисперсных частиц
- •Каталитические свойства дисперсных частиц
- •Энергетическое и силовое определение поверхностного натяжения
- •Факторы, влияющие на поверхностное натяжение
- •Дисперсная и полярная составляющие поверхностного натяжения
- •Метод избыточных величин Гиббса
- •Капиллярное давление
- •Закон Лапласа
- •Смачивание
- •Закон Юнга
- •Несмачивание, полное смачивание, гидрофильность, гидрофобность.
- •Правило Антонова
- •Эффект Марангони
- •Зависимость смачивания от свойств твёрдой поверхности
- •Смачивание нанокаплями
- •Адгезия, когезия, уравнение Дюпре
- •Закон Кельвина
- •Закон Гиббса-Оствальда
- •Изотермическая перегонка
- •Капиллярная конденсация
- •Закон Жюрена
- •Закон Пуазейля
- •Измерение поверхностного натяжения методом капиллярного подъёма
- •Измерение поверхностного натяжения методом сидящей капли
- •Измерение поверхностного натяжения методом максимального давления
- •Измерение поверхностного натяжения методом пластинки Вильгельми
- •Измерение поверхностного натяжения методом вращающейся капли
- •Измерение поверхностной энергии твёрдых тел
- •Адсорбция пав из растворов на поверхности твёрдых тел
- •Химическое модифицирование твёрдых тел
- •Классификация пав по растворимости
- •Классификация пав по диссоциации в воде
- •Классификация пав по способу образования мицелл и происхождению
- •Классификация пав по фх воздействию на поверхность раздела между фазами
- •Гидрофильно-липофильный баланс
- •Критический параметр упаковки
- •Механизмы образования электрического заряда на поверхности твёрдых тел и жидкостей в дисперсных системах
- •Строение дэс
- •Влияние электролитов на дэс
- •Электрофорез
- •Электроосмос
- •Потенциал течения
- •Потенциал оседания
- •Электрокапиллярные явления (электрокапиллярная кривая, закон Липпмана)
41. Кольца и слои Лизеганга
К периодическим коллоидным структурам относятся также слои и кольца Лизеганга.Кольца Лизеганга, можно получить следующим образом. Каплю 15%-ного раствора AgNO3 помещают на плёнку геля желатины, предварительно пропитанного 0.4%-ным растором бихромата калия. Соль серебра постепенно диффундирует в гель. При этом происходит осаждение бихромата серебра. Осадок не образует непрерывную зону вокруг капли, а представляет собой концентрические кольца, разделённые прозрачными промежутками.
Обычно кольца Лизеганга появляются, когда концентрированный раствор соли диффундирует через гель, содержащий другой электролит с более низкой концентрацией. В результате химической реакции образуется соль труднорастворимого соединения, которая осаждается некоторым периодическим способом. Осадок может располагаться не только в виде концентрированных колец, но и в виде сегментов и радиальных образований.
Осадок выпадает в зонах достаточно высокого пересыщения, где продукт реакции выделяется в виде мельчайших частиц дисперсной фазы Л. с., расположенные в виде концентрических колец, называемыми кольцами Лизеганга. Они образуются при радиальной диффузии (распространении из центра в разные стороны) одного из растворимых веществ через студень, содержащий другое вещество.
Появление Л. с. можно наблюдать, например, при диффузии нитрата серебра (AgNO3) в студень желатины, в котором находится бихромат калия (K2Cr2O7). Аналогичное явление происходит не только в студнях, но и в уплотнённых инертных порошках (кварца, кизельгура и т. п.), пропитанных раствором соответствующего реагента. С образованием Л. с. связывают послойную окраску минералов (агата, яшмы), слоистую структуру минеральных отложений в органах животных и человека, полосатость некоторых биологических тканей, например поперечнополосатых мышц.
42. Пептизация.
Это обратный процесс образования устойчивой свободной дисперсной системы из осадка или геля в связи с разрушением флоккул и коагуляции структур. Пептизация применяется в технике при получении высокодисперсных суспензий глин и других веществ.
Пептизация, самопроизвольный распад агрегатов (комочков, хлопьев, сгустков), образованных скоплением слипшихся коллоидных частиц, на агрегаты меньших размеров или отдельные первичные частицы. Особенно наглядна П. студенистых осадков (коагелей), возникающих вследствие коагуляции золей и высокодисперсных суспензий. При П. происходит "коллоидное растворение" осадка — из коагулята вновь образуется золь. Внешнее сходство этого явления с растворением белков, расщепленных ферментом пепсином, определило происхождение термина. П. можно наблюдать при повышении температуры, удалении коагулирующих реагентов (см. Коагулянты) промыванием осадка. Наиболее характерна П. при введении в дисперсионную среду пептизаторов — веществ, способствующих дезагрегированию, то есть разъединению слипшихся частиц. Пептизаторами могут быть электролиты и поверхностно-активные вещества, вызывающие лиофилизацию (см. Лиофильность и лиофобность) поверхности частиц дисперсной фазы. Так, П. геля гидроокиси железа в водной среде возможна при добавлении небольших количеств хлорного железа, а каолин пептизируется гуминовыми кислотами. Перемешивание обычно ускоряет П. Процессы рекристаллизации и коалесценции, которые часто протекают в коллоидных осадках при старении, препятствуют П., так как приводят к сращиванию частиц. Затруднена также П. осадков, выпавших при коагулировании золей поливалентными ионами и полиэлектролитами.
П. используют для получения жидких дисперсных систем из порошков или паст в химической и пищевой технологии. Важная роль принадлежит П. в совокупности процессов, определяющих моющее действие, формирование и разрушение различных дисперсных структур. Иногда П. вредна, например, при водоочистке, осветлении вин и др.