
- •Ответы на экзаменационные вопросы по курсу «Микроэкономика II» Оглавление
- •Вопрос 1:Аксиоматика теории потребительского выбора.
- •Вопрос 2:Ординалистский подход в теории потребительского выбора.
- •Вопрос 3: Кривые безразличия. Предельная норма замещения.
- •Вопрос 4: Оптимум потребителя в ординалистской концепции потребительского выбора.
- •Вопрос 5: Кривая «цена-потребление» и кривая спроса.
- •Вопрос 6: Кривые «доход-потребление» и кривые Энгеля.
- •Вопрос 7: Эффекты дохода и замещения по Слуцкому.
- •Вопрос 8: Эффекты дохода и замещения по Хиксу.
- •Вопрос 9: Уравнение Слуцкого.
- •Вопрос 10: Компенсированный спрос.
- •Вопрос 11: Перекрестные эффекты дохода и замещения.
- •Вопрос 12: Компенсирующая и эквивалентная вариации дохода.
- •Вопрос 13: Взаимосвязь между различными показателями выгоды потребителя.
- •Вопрос 14: Концепция выявленных предпочтений. Роль концепции выявленных предпочтений в теории потребительского выбора.
- •Вопрос 15: Выявленные предпочтения и анализ индексов реального дохода и цен.
- •Вопрос 16: Индивидуальный и рыночный спрос.
- •Вопрос 17:Ценовая эластичность спроса.
- •Вопрос 18: Факторы, влияющие на эластичность спроса по цене.
- •Вопрос 19: Эластичность спроса по доходу. Обобщенный закон Энгеля.
- •Вопрос 20: Уравнение Слуцкого в коэффициентах эластичности.
- •Вопрос 21: Перекрестная эластичность спроса по цене.
- •Вопрос 22: Потребительский выбор с учетом начального запаса.
- •Вопрос 23: Уравнение Слуцкого с учетом начального запаса.
- •Вопрос 24: Производственная функция.
- •Вопрос 25: Свойства производственной функции в коротком периоде.
- •Вопрос 26: Предельная норма технического замещения.
- •Вопрос 27: Эффект масштаба.
- •Вопрос 28: Производственная функция и технический прогресс.
- •Вопрос 29: Свойства производственной функции Кобба-Дугласа.
- •Вопрос 30: Экономические и бухгалтерские издержки. Невозвратные издержки.
- •Вопрос 31: Экономически эффективные способы производства. Траектория расширения производства и условный спрос на ресурсы.
- •Вопрос 32: Концепция выявленной минимизации издержек.
- •Вопрос 33: Издержки в долгосрочном периоде.
- •Вопрос 34: Издержки в краткосрочном периоде.
- •Вопрос 35: Взаимосвязь краткосрочных и долгосрочных издержек.
- •Вопрос 36. Максимизация прибыли и спрос на ресурсы. Линии изоприбыли.
- •Вопрос 37. Концепция выявленной максимизации прибыли.
- •Вопрос 38. Максимизация выпуска и спрос на ресурсы.
- •Вопрос 39. Предложение конкурентной фирмы в коротком и длительном периодах. Квазипостоянные издержки.
- •Вопрос 40. Излишек производителя.
- •Вопрос 41. Предложение конкурентной отрасли в коротком и длительном периоде.
- •Вопрос 42. Рыночная структура совершенной конкуренции и экономическая эффективность.
- •Вопрос 43. Монополия как рыночная структура. Социальные издержки монопольной власти.
- •Вопрос 44. Выбор монополиста с несколькими заводами.
- •Вопрос 45. Монопольная власть и ее измерение. Регулирование монополии.
- •Вопрос 46. Влияние "потолка" цены на выбор монополиста.
- •Вопрос 47. Влияние налогообложения на выбор монополиста.
- •Вопрос 48. Естественная монополия и ее регулирование.
- •Вопрос 49: Условия существования и цели ценовой дискриминации.
- •Вопрос 50: Виды ценовой дискриминации.
- •Ценовая дискриминация первой степени
- •Ценовая дискриминация второй степени
- •Ценовая дискриминация третьей степени
- •Расчет оптимальных цен и объемов выпуска в случае ценовой дискриминации
- •Вопрос 51: Особенности ценовой дискриминации второй степени.
- •Вопрос 52: Ценообразование по схеме двойного тарифа.
- •Вопрос 53: Предположительные вариации как основа моделей олигополии.
- •Вопрос 54: Дуополия Курно.
- •Вопрос 55: Дуополия Стэкльберга.
- •Вопрос 56: Дуополия Бертрана.
- •Кривая спроса дуополиста Бертрана
- •Вопрос 57: Картель. Однопериодовая модель и модель повторяющегося взаимодействия.
- •Вопрос 58: Модель доминирующего лидера.
- •Вопрос 59: Монополистическая конкуренция как рыночная структура. Проблема эффективности.
- •Вопрос 60: Модель монополистической конкуренции э. Чемберлина
- •Вопрос 61: Модель индивидуального предложения труда.
- •Вопрос 62: Существование и стабильность общего равновесия.
- •Вопрос 63: Условия достижения общего равновесия.
- •Вопрос 64: Общее равновесие и эффективность в обмене.
- •Вопрос 65-66: Общее равновесие и эффективность в производстве. Эффективность структуры выпуска.
- •Вопрос 67: Первая и вторая теоремы экономики благосостояния.
- •Вопрос 68: Потребительский выбор в условиях неопределенности.
- •Вопрос 69: Функция ожидаемой полезности.
- •Вопрос 70: Особенности поведения расположенных к риску, нерасположенных к риску и нейтральных к риску экономических субъектов.
- •Вопрос 71: Измерение риска. Плата за риск.
- •Вопрос 72: Методы снижения риска: диверсификация, страхование, приобретение информации.
Вопрос 52: Ценообразование по схеме двойного тарифа.
Суть данной схемы ценообразования состоит в следующем: с потребителей взимается, во-первых, фиксированная ''входная'' плата за доступ к потреблению данного товара, а во-вторых, плата (одинаковая) за каждую потребленную единицу товара.
Имеется множество других применений двойных тарифов: Polaroid продает фотоаппарат по одной цене, а пленку — по другой. Принимая решение о том, покупать фотоаппарат или нет, люди, предположительно, учитывают и стоимость пленки. Компания, производящая лезвия для бритья, продает бритву по одной цене, лезвия — по другой — и снова цена, устанавливаемая ею на лезвия, влияет на спрос на бритвы, и наоборот.
Рассмотрим решение этой задачи ценообразования в контексте исходного примера задачи, называемой дилеммой Диснейленда. Как обычно, примем ряд упрощающих предпосылок. Во-первых, полагаем, что в Диснейленде имеется только один вид аттракционов; во-вторых, что вкусы всех посетителей в отношении аттракционов одинаковы.
На рис.24.5 изображены кривая спроса и кривая предельных издержек (постоянных) на аттракционы. Как обычно, кривая спроса нисходящая: если Диснейленд установит на каждый аттракцион высокую цену, будет куплено меньше аттракционов. Предположим, что владельцы парка устанавливают на аттракцион цену p*125, как на рис.24.5; результатом этого является спрос на x*126 аттракционов. Какую цену за вход в парк смогут установить его владельцы, если цена аттракционов составляет p*127?
Общая готовность платить за x*128129 аттракционов измеряется излишком потребителей. Следовательно, самое большее, что могут запросить за вход владельцы парка, это — площадь, обозначенная "излишек потребителей" на рис.24.5. Общую прибыль монополиста составит эта площадь плюс прибыль от аттракционов (p* — AC)x*130131, но так как в данной модели издержки постоянны, то MC = AC, и выражение (p* — AC)x* можно переписать в виде (p* — MC)x*
|
Дилемма Диснейленда. Если владельцы парка установят цену p*132133, то спрос на аттракционы составит x*134135. Излишек потребителей измеряет цену, которую владельцы могут установить за вход в парк. Общая прибыль фирмы максимизируется, когда владельцы устанавливают цену, равную предельным издержкам. |
Рис. 24.5 |
Нетрудно увидеть, что общая прибыль максимизируется при цене, равной предельным издержкам: как мы видели ранее, эта цена дает максимально возможный излишек потребителя плюс излишек производителя. Поскольку монополист получает возможность затребовать у людей их излишек потребителей, установление цены, равной предельным издержкам, и платы за вход, приводящей к извлечению излишка потребителей, есть политика максимизации прибыли.
И действительно, именно этой политики придерживаются Диснейленд и большинство других парков аттракционов. Существует единая плата за вход, но зато аттракционы внутри парка бесплатные. Похоже, что предельные издержки на аттракционы меньше, чем транзакционные издержки сбора отдельной платы за них.
Алгебраически данную модель можно формализовать следующим образом:
Прибыль (П) при данной схеме ценообразования есть сумма прибыли от входной платы Пе и прибыли от продаж Пs.
Запишем условие максимизации прибыли:
Max П = Пе+(p — AC)(x1+x2)
То есть если на рынке действует две группы покупателей с линейными кривыми спроса вида x1 = a — bp1136 и x2 = c — dp2137138, то выражение примет следующий вид:
Max П = CS1(p)+CS2(p)+(p — AC)(x1+x2),
Где CS1(p1) и CS2(p2) – потребительские излишки соответственно первой и второй групп покупателей, выраженные как функция от цены, а x1+x2 – функция совокупного спроса.
Решив уравнение максимизации (частная производная прибыли по цене), мы найдем цену и размер потребительских излишков, больший из которых и будет равен Пе.