Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamenatsionnye_voprosy_po_kursu_Mik...doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
4.24 Mб
Скачать

Вопрос 34: Издержки в краткосрочном периоде.

Ответ на этот вопрос дан выше. Смотрите пред. вопрос.

Вопрос 35: Взаимосвязь краткосрочных и долгосрочных издержек.

Ответ на этот вопрос дан выше. Смотрите пред. вопрос.

Вопрос 36. Максимизация прибыли и спрос на ресурсы. Линии изоприбыли.

Рассмотрим задачу максимизации прибыли в коротком периоде, когда фактор 2 фиксирован на некотором уровне . Пусть f(x1, x2) — производственная функция фирмы, p — цена выпуска, а w1 и w2 — цены двух факторов производства. Тогда задача нахождения максимума прибыли, стоящая перед фирмой, может быть записана в виде

max pf(x1, ) — w1x1 — w2 . Условие оптимального выбора фактора 1 определить нетрудно. Если — выбор фактора 1, максимизирующий прибыль, то произведение цены выпуска на предельный продукт фактора 1 должно равняться цене фактора 1. В условных обозначениях

pMP1( , ) = w1.

Другими словами, стоимость предельного продукта фактора должна равняться цене фактора. Чтобы понять суть этого правила, представьте, что будет, если фирма примет решение об использовании чуть большего количества фактора 1. Если добавить чуть-чуть этого фактора, x1, то вы будете производить больше на y = MP1 x1, и этот прирост выпуска будет стоить pMP1 x1. Но производство этого предельного выпуска обойдется в w1 x1. Если стоимость предельного продукта превышает издержки на него, можно увеличить прибыль путем увеличения количества фактора 1. Если стоимость предельного продукта ниже издержек на него, прибыль можно увеличить путем уменьшения объема использования фактора 1. Если прибыль фирмы максимальна, она не должна возрастать при увеличении или уменьшении количества фактора 1. Это означает, что при максимизирующем прибыль выборе факторов и объемов выпуска стоимость предельного продукта pMP1( , ) должна равняться цене фактора w1.Это условие можно вывести и графически. Взгляните на рис.18.1. Изображенная на нем кривая представляет производственную функцию при условии сохранения фактора 2 неизменным на уровне . Используя y для обозначения выпуска фирмы, получаем, что прибыль задается выражением

 = py — w1x1 — w2 .

Из этого выражения можно получить y, выразив тем самым выпуск как функцию x1:

+ x1. (18.1)

Это уравнение описывает изопрофитные линии — все комбинации применяемых факторов производства и выпуска, дающие постоянный уровень прибыли Y. По мере изменения Z мы получаем семейство параллельных прямых линий, наклон каждой из которых равен w1/pAA, а точка пересечения с вертикальной осью задана выражением (/p) + (w2 /p)BB, измеряющим сумму прибыли и постоянных издержек фирмы.

Постоянные издержки постоянны, так что единственная величина, которая действительно изменяется при перемещении с одной изопрофитной линии на другую, есть уровень прибыли. Поэтому более высокие уровни прибыли связываются с теми изопрофитными линиями, точки пересечения которых с вертикальной осью лежат выше.

Тогда задача максимизации прибыли сводится к нахождению точки кривой производственной функции, связываемой с самой высокой изопрофитной линией. Такая точка показана на рис.18.1. Как обычно, она характеризуется условием касания: наклон кривой производственной функции должен равняться наклону изопрофитной линии. Поскольку наклон производственной функции есть предельный продукт, а наклон изопрофитной линии есть w1/pCC, это условие может быть записано также в виде

MP1 = DD,

что эквивалентно условию, выведенному нами выше.

В длительном периоде фирма вольна выбирать уровень использования всех факторов производства. Поэтому задачу максимизации прибыли в длительном периоде можно сформулировать как

max pf(x1, x2) — w1x1 — w2x2.

x1, x2EE

В основном это та же задача, что и описанная выше для короткого периода, но теперь могут изменяться количества обоих факторов производства.

Условие, описывающее оптимальный выбор, остается по существу тем же, что и раньше, но только теперь мы должны применять его к каждому фактору. Как мы видели ранее, независимо от уровня использования фактора 2 стоимость предельного продукта фактора 1 должна равняться цене этого фактора. Теперь такого же рода условие должно соблюдаться для выбора каждого фактора производства:

pMP1( , ) = w1.

pMP2( , ) = w2.

При оптимальном выборе фирмой количества факторов 1 и 2 стоимость предельного продукта каждого фактора должна равняться его цене. В точке оптимального выбора прибыль фирмы не может быть увеличена путем изменения уровня использования какого-либо из факторов.

Доводы в пользу этого те же, что и при обсуждении принятия решений о выпуске, максимизирующем прибыль в коротком периоде. Если бы, например, стоимость предельного продукта фактора 1 превысила цену фактора 1, использование чуть большего количества фактора 1 привело бы к увеличению выпуска на величину MP1FF, которая продавалась бы за pMP1GG долларов. Если стоимость этого выпуска превышает издержки на фактор, используемый для его производства, то расширение использования этого фактора явно окупится.

Эти два условия дают нам два уравнения с двумя неизвестными HH и II. Если нам известно поведение предельных продуктов как функций x1 и x2JJ, мы сможем выразить оптимальный выбор каждого фактора как функцию цен. Получаемые при этом уравнения известны как уравнения кривых спроса на факторы.