Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!!Ответы ИТ сборка.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
1.72 Mб
Скачать

30 Системы поддержки принятия решений. Пакеты прикладных программ.

Система поддержки принятия решений предназначена для поддержки многокритериальных решений в сложной информационной среде. При этом под многокритериальностью понимается тот факт, что результаты принимаемых решений оцениваются не по одному, а по совокупности многих показателей (критериев) рассматриваемых одновременно. Информационная сложность определяется необходимостью учета большого объема данных, обработка которых без помощи современной вычислительной техники практически невыполнима. В этих условиях число возможных решений, как правило, весьма велико, и выбор наилучшего из них "на глаз", без всестороннего анализа может приводить к грубым ошибкам.

Система поддержки решений СППР решает две основные задачи:

  • выбор наилучшего решения из множества возможных (оптимизация),

  • упорядочение возможных решений по предпочтительности (ранжирование).

В обеих задачах первым и наиболее принципиальным моментом является выбор совокупности критериев, на основе которых в дальнейшем будут оцениваться и сопоставляться возможные решения (будем называть их также альтернативами). Система СППР помогает пользователю сделать такой выбор.

Пакеты прикладных программ

Это комплекс взаимосвязанных программ для решения задач определенного класса. Выделяются следующие виды ППП:

­– проблемно-ориентированные. Используются для тех проблемных областей, в которых возможна типизация функций управления, структур данных и алгоритмов обработки. Например, это ППП автоматизации бухучета, финансовой деятельности, управления персоналом и т.д.;

автоматизации проектирования (или САПР). Используются в работе конструкторов и технологов, связанных с разработкой чертежей, схем, диаграмм;

общего назначения. Поддерживают компьютерные технологии конечных пользователей и включают текстовые и табличные процессоры, графические редакторы, системы ––управления базами данных (СУБД);

офисные. Обеспечивают организационное управление деятельностью офиса. Включают органайзеры (записные и телефонные книжки, календари, презентации и т.д.), средства распознавания текста;

настольные издательские системы – более функционально мощные текстовые процессоры;

системы искусственного интеллекта. Используют в работе некоторые принципы обработки информации, свойственные человеку. Включают информационные системы, поддерживающие диалог на естественном языке; экспертные системы, позволяющие давать рекомендации пользователю в различных ситуациях; интеллектуальные пакеты прикладных программ, позволяющие решать прикладные задачи без программирования.

31 Экспертные системы. Оболочки для построения экспертных систем. Поисковая, диагностическая, интерпретирующая системы. Пакеты прикладных программ.

Экспертные системы – это направление исследований в области искусственного интеллекта по созданию вычислительных систем, умеющих принимать решения, схожие с решениями экспертов в заданной предметной области.

Как правило, экспертные системы создаются для решения практических задач в некоторых узкоспециализированных областях, где большую роль играют знания «бывалых» специалистов.

Экспертное знание – это сочетание теоретического понимания проблемы и практических навыков ее решения, эффективность которых доказана в результате практической деятельности экспертов в данной области. Инженер по знаниям, формализует всю полученную информацию в виде базы знаний и помогает программисту в написании экспертной системы.

Первую экспертную систему, которую назвали Dendral, разработали в Стэнфорде в конце 1960-х г.г. Эта была экспертная система, определяющая строение органических молекул по химическим формулам и спектрографическим данным о химических связях в молекулах.

Экспертная система Mycin, разработанная в том же Стэнфорде в середине 1970-х г.г., одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Все рассуждения экспертной системы Mycin были основаны на принципах управляющей логики, соответствующих специфике предметной области.

На сегодняшний день создано уже большое количество экспертных систем. С помощью них решается широкий круг задач, но исключительно в узкоспециализированных предметных областях. Как правило, эти области хорошо изучены и располагают более менее четкими стратегиями принятия решений. Сейчас развитие экспертных систем несколько приостановилось, и этому есть ряд причин:

Передача экспертным системам «глубоких» знаний о предметной области является большой проблемой. Как правило, это является следствием сложности формализации эвристических знаний экспертов.

Экспертные системы неспособны предоставить осмысленные объяснения своих рассуждений, как это делает человек. Как правило, экспертные системы всего лишь описывают последовательность шагов, предпринятых в процессе поиска решения.

Отладка и тестирование любой компьютерной программы является достаточно трудоемким делом, но проверять экспертные системы особенно тяжело. Это является серьезной проблемой, поскольку экспертные системы применяются в таких критичных областях, как управление воздушным и железнодорожным движением, системами оружия и в ядерной промышленности.

Экспертные системы обладают еще одним большим недостатком: они неспособны к самообучению.

Оболочки

Малая Экспертная Система 2.0 - Она предназначена для проведения консультации с пользователем в какой-либо прикладной области (на которую настроена загруженная база знаний) с целью определения вероятностей возможных исходов и использует для этого оценку правдоподобности некоторых предпосылок, получаемую от пользователя. Expert Developer Pro - Программа создана по идеологии «многодокументный интерфейс пользователя», что позволяет осуществлять одновременно различные виды деятельности с несколькими шаблонами одновременно (одновременное тестирование нескольких сотрудников, создание, просмотр и корректировка нескольких шаблонов и прочее).

G2 - это объектно ориентированная среда для разработки и сопровождения приложений реального времени, использующих базы данных.

HUGIN- пакет программ для конструирования моделей, основанных на системах экспертных оценок в областях, характеризующихся существенной неопределенностью.

Exsys - интеллектуальная система, которая может быть использована для разработки базы знаний в любой предметной области. В систему включены средства отладки и тестирования программы, редактирования для модификации знаний и данных.

Экспертные системы, выполняющие интерпретацию, как правило, используют информацию от датчиков для описания ситуации. Например, это может быть интерпретация показаний измерительных приборов на химическом заводе для определения состояния процесса. Интерпретирующие системы имеют дело не с четкими символьными представлениями проблемной ситуации, а непосредственно с реальными данными. Они сталкиваются с затруднениями, которых нет у систем других типов, потому что им приходится обрабатывать информацию “зашумленную”, недостаточную, неполную, ненадежную или ошибочную.

Интерпретирующие экспертные системы могут обработать разнообразные виды данных. Например, система анализа сцен и распознавания речи, используя естественную информацию (в одном случае визуальные образы, в другом – звуковые сигналы), анализирует их характеристики и понимает их смысл. Интерпретация в области химии использует данные дифракции рентгеновских лучей, спектрального анализа или ядерного магнитного резонанса для вывода химической структуры веществ. Интерпретирующая система в геологии использует каротажное зондирование – измерение проводимости горных пород в буровых скважинах и вокруг них, чтобы определить подповерхностные геологические структуры. Медицинские интерпретирующие системы, основываясь на показаниях следящих систем (например, значениях температуры, пульса, кровяного давления), устанавливают диагноз или тяжесть заболевания. В военном деле интерпретирующие системы, получая данные от радаров, радиосвязи и сонарных устройств, оценивают ситуацию и идентифицируют цели.

Экспертные системы выполняют диагностирование, используя описания ситуаций, характеристики поведения или знания о конструкции компонентов, чтобы установить вероятные причины неправильно функционирующей диагностируемой системы. Примерами служат определение причин заболевания по симптомам, наблюдаемым у пациентов; локализация неисправностей в электронных схемах и определение неисправных компонентов в системе охлаждения ядерных реакторов. Диагностические системы часто являются консультантами, которые не только ставят диагноз, но и помогают в отладке. Они могут взаимодействовать с пользователем, чтобы оказать помощь при поиске неисправностей, а затем предложить порядок действий по их устранению. Медицина представляется вполне естественной областью для диагностирования, и действительно, в медицинской области было разработано больше диагностических систем, чем в любой другой отдельно взятой предметной области. Однако в настоящее время многие диагностические системы разрабатывают для приложений к инженерному делу и компьютерным системам.